論文の概要: Unveil Conditional Diffusion Models with Classifier-free Guidance: A Sharp Statistical Theory
- arxiv url: http://arxiv.org/abs/2403.11968v1
- Date: Mon, 18 Mar 2024 17:08:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 19:20:58.345327
- Title: Unveil Conditional Diffusion Models with Classifier-free Guidance: A Sharp Statistical Theory
- Title(参考訳): クラシファイアフリーガイダンスを用いた未開条件拡散モデル:シャープ統計理論
- Authors: Hengyu Fu, Zhuoran Yang, Mengdi Wang, Minshuo Chen,
- Abstract要約: 条件付き拡散モデルは現代の画像合成の基礎となり、計算生物学や強化学習などの分野に広く応用されている。
経験的成功にもかかわらず、条件拡散モデルの理論はほとんど欠落している。
本稿では,条件拡散モデルを用いた分布推定の急激な統計的理論を提示することにより,ギャップを埋める。
- 参考スコア(独自算出の注目度): 87.00653989457834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conditional diffusion models serve as the foundation of modern image synthesis and find extensive application in fields like computational biology and reinforcement learning. In these applications, conditional diffusion models incorporate various conditional information, such as prompt input, to guide the sample generation towards desired properties. Despite the empirical success, theory of conditional diffusion models is largely missing. This paper bridges this gap by presenting a sharp statistical theory of distribution estimation using conditional diffusion models. Our analysis yields a sample complexity bound that adapts to the smoothness of the data distribution and matches the minimax lower bound. The key to our theoretical development lies in an approximation result for the conditional score function, which relies on a novel diffused Taylor approximation technique. Moreover, we demonstrate the utility of our statistical theory in elucidating the performance of conditional diffusion models across diverse applications, including model-based transition kernel estimation in reinforcement learning, solving inverse problems, and reward conditioned sample generation.
- Abstract(参考訳): 条件付き拡散モデルは現代の画像合成の基礎となり、計算生物学や強化学習などの分野に広く応用されている。
これらの応用において、条件拡散モデルには、様々な条件情報、例えばプロンプト入力が組み込まれ、サンプル生成を所望の特性に導く。
経験的成功にもかかわらず、条件拡散モデルの理論はほとんど欠落している。
本稿では, 条件拡散モデルを用いた分布推定の急激な統計的理論を提示することにより, このギャップを埋める。
解析の結果,データ分布の滑らかさに適応し,ミニマックス下界に適合するサンプル複雑性境界が得られた。
我々の理論の発展の鍵は条件付きスコア関数の近似結果にある。
さらに,強化学習におけるモデルベース遷移カーネル推定,逆問題解,報奨条件付きサンプル生成など,多種多様な応用における条件拡散モデルの性能を明らかにするための統計的理論の有用性を示した。
関連論文リスト
- An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization [59.63880337156392]
拡散モデルはコンピュータビジョン、オーディオ、強化学習、計算生物学において大きな成功を収めた。
経験的成功にもかかわらず、拡散モデルの理論は非常に限定的である。
本稿では,前向きな理論や拡散モデルの手法を刺激する理論的露光について述べる。
論文 参考訳(メタデータ) (2024-04-11T14:07:25Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
拡散モデルは、所望の特性に向けてサンプル生成を操るために、スコア関数にタスク固有の情報を注入することの恩恵を受ける。
本稿では,ガウス混合モデルの文脈における拡散モデルに対する誘導の影響を理解するための最初の理論的研究を提供する。
論文 参考訳(メタデータ) (2024-03-03T23:15:48Z) - Score-based Generative Modeling Through Backward Stochastic Differential
Equations: Inversion and Generation [6.2255027793924285]
提案したBSDEベースの拡散モデルは、機械学習における微分方程式(SDE)の適用を拡大する拡散モデリングの新しいアプローチを示す。
モデルの理論的保証、スコアマッチングにリプシッツネットワークを用いることの利点、および拡散反転、条件拡散、不確実性定量化など様々な分野への応用の可能性を示す。
論文 参考訳(メタデータ) (2023-04-26T01:15:35Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
拡散モデリングの近似と一般化能力について、初めて厳密な分析を行った。
実密度関数がベソフ空間に属し、経験値整合損失が適切に最小化されている場合、生成したデータ分布は、ほぼ最小の最適推定値が得られることを示す。
論文 参考訳(メタデータ) (2023-03-03T11:31:55Z) - Information-Theoretic Diffusion [18.356162596599436]
拡散モデルのデノイングは密度モデリングや画像生成において大きな進歩をもたらした。
情報理論における古典的な結果にインスパイアされた拡散モデルのための新しい数学的基礎を導入する。
論文 参考訳(メタデータ) (2023-02-07T23:03:07Z) - Bi-Noising Diffusion: Towards Conditional Diffusion Models with
Generative Restoration Priors [64.24948495708337]
本研究では,事前訓練した非条件拡散モデルを用いて,予測サンプルをトレーニングデータ多様体に導入する手法を提案する。
我々は,超解像,着色,乱流除去,画像劣化作業におけるアプローチの有効性を実証するための総合的な実験を行った。
論文 参考訳(メタデータ) (2022-12-14T17:26:35Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
現在のベストプラクティスは、フォワードダイナミクスが既知の単純なノイズ分布に十分に近づくことを確実にするために大きなTを提唱している。
本稿では, 理想とシミュレーションされたフォワードダイナミクスのギャップを埋めるために補助モデルを用いて, 標準的な逆拡散過程を導出する方法について述べる。
論文 参考訳(メタデータ) (2022-06-10T15:09:46Z) - Conditional Image Generation with Score-Based Diffusion Models [1.1470070927586016]
スコアベース拡散モデルを用いて条件付き確率分布を学習するための異なるアプローチの体系的比較と理論的解析を行う。
条件付きスコアの最も成功した推定器の1つを理論的に正当化する結果を証明した。
我々は,従来の最先端手法と同等の性能を持つマルチスピード拡散フレームワークを導入し,条件付きスコアの新たな推定手法を提案する。
論文 参考訳(メタデータ) (2021-11-26T17:10:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。