OUCopula: Bi-Channel Multi-Label Copula-Enhanced Adapter-Based CNN for Myopia Screening Based on OU-UWF Images
- URL: http://arxiv.org/abs/2403.11974v1
- Date: Mon, 18 Mar 2024 17:12:00 GMT
- Title: OUCopula: Bi-Channel Multi-Label Copula-Enhanced Adapter-Based CNN for Myopia Screening Based on OU-UWF Images
- Authors: Yang Li, Qiuyi Huang, Chong Zhong, Danjuan Yang, Meiyan Li, A. H. Welsh, Aiyi Liu, Bo Fu, Catherien C. Liu, Xingtao Zhou,
- Abstract summary: Myopia screening using cutting-edge ultra-widefield (UWF) fundus imaging is potentially significant for ophthalmic outcomes.
Current multidisciplinary research between ophthalmology and deep learning (DL) concentrates primarily on disease classification and diagnosis using single-eye images.
We propose a framework of copula-enhanced adapter convolutional neural network (CNN) learning with OU UWF fundus images (OUCopula) for joint prediction of multiple clinical scores.
- Score: 6.331220638842259
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Myopia screening using cutting-edge ultra-widefield (UWF) fundus imaging is potentially significant for ophthalmic outcomes. Current multidisciplinary research between ophthalmology and deep learning (DL) concentrates primarily on disease classification and diagnosis using single-eye images, largely ignoring joint modeling and prediction for Oculus Uterque (OU, both eyes). Inspired by the complex relationships between OU and the high correlation between the (continuous) outcome labels (Spherical Equivalent and Axial Length), we propose a framework of copula-enhanced adapter convolutional neural network (CNN) learning with OU UWF fundus images (OUCopula) for joint prediction of multiple clinical scores. We design a novel bi-channel multi-label CNN that can (1) take bi-channel image inputs subject to both high correlation and heterogeneity (by sharing the same backbone network and employing adapters to parameterize the channel-wise discrepancy), and (2) incorporate correlation information between continuous output labels (using a copula). Solid experiments show that OUCopula achieves satisfactory performance in myopia score prediction compared to backbone models. Moreover, OUCopula can far exceed the performance of models constructed for single-eye inputs. Importantly, our study also hints at the potential extension of the bi-channel model to a multi-channel paradigm and the generalizability of OUCopula across various backbone CNNs.
Related papers
- CeViT: Copula-Enhanced Vision Transformer in multi-task learning and bi-group image covariates with an application to myopia screening [9.928208927136874]
We present a Vision Transformer-based bi-channel architecture, named CeViT, where the common features of a pair of eyes are extracted via a shared Transformer encoder.
We demonstrate that CeViT enhances the baseline model in both accuracy of classifying high-myopia and prediction of AL on both eyes.
arXiv Detail & Related papers (2025-01-11T13:23:56Z) - CAVE-Net: Classifying Abnormalities in Video Capsule Endoscopy [0.1937002985471497]
We propose an ensemble-based approach to improve diagnostic accuracy in analyzing complex image datasets.
We leverage the unique feature extraction capabilities of each model to enhance the overall accuracy.
By using these methods, the proposed framework, CAVE-Net, provides robust feature discrimination and improved classification results.
arXiv Detail & Related papers (2024-10-26T17:25:08Z) - OU-CoViT: Copula-Enhanced Bi-Channel Multi-Task Vision Transformers with Dual Adaptation for OU-UWF Images [6.710406784225201]
Myopia screening using cutting-edge ultra-widefield (UWF) fundus imaging presents a promising new paradigm for multi-task problems in Ophthalmology.
OU-CoViT: a novel Copula-Enhanced Bi-Channel Multi-Task Vision Transformers with Dual Adaptation for OU-UWF images.
arXiv Detail & Related papers (2024-08-18T07:42:11Z) - CeCNN: Copula-enhanced convolutional neural networks in joint prediction of refraction error and axial length based on ultra-widefield fundus images [6.787893694522311]
We propose the Copula-enhanced Convolutional Neural Network (CeCNN) to jointly predict Spherical Equivalence (SE) measurement and high myopia diagnosis.
arXiv Detail & Related papers (2023-11-07T13:06:50Z) - MAF-Net: Multiple attention-guided fusion network for fundus vascular
image segmentation [1.3295074739915493]
We propose a multiple attention-guided fusion network (MAF-Net) to accurately detect blood vessels in retinal fundus images.
Traditional UNet-based models may lose partial information due to explicitly modeling long-distance dependencies.
We show that our method produces satisfactory results compared to some state-of-the-art methods.
arXiv Detail & Related papers (2023-05-05T15:22:20Z) - Hierarchical Contrastive Learning Enhanced Heterogeneous Graph Neural
Network [59.860534520941485]
Heterogeneous graph neural networks (HGNNs) as an emerging technique have shown superior capacity of dealing with heterogeneous information network (HIN)
Recently, contrastive learning, a self-supervised method, becomes one of the most exciting learning paradigms and shows great potential when there are no labels.
In this paper, we study the problem of self-supervised HGNNs and propose a novel co-contrastive learning mechanism for HGNNs, named HeCo.
arXiv Detail & Related papers (2023-04-24T16:17:21Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - DONet: Dual Objective Networks for Skin Lesion Segmentation [77.9806410198298]
We propose a simple yet effective framework, named Dual Objective Networks (DONet), to improve the skin lesion segmentation.
Our DONet adopts two symmetric decoders to produce different predictions for approaching different objectives.
To address the challenge of large variety of lesion scales and shapes in dermoscopic images, we additionally propose a recurrent context encoding module (RCEM)
arXiv Detail & Related papers (2020-08-19T06:02:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.