論文の概要: Accelerating Scientific Discovery with Generative Knowledge Extraction, Graph-Based Representation, and Multimodal Intelligent Graph Reasoning
- arxiv url: http://arxiv.org/abs/2403.11996v1
- Date: Mon, 18 Mar 2024 17:30:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 19:11:08.350516
- Title: Accelerating Scientific Discovery with Generative Knowledge Extraction, Graph-Based Representation, and Multimodal Intelligent Graph Reasoning
- Title(参考訳): 生成的知識抽出、グラフベース表現、マルチモーダル・インテリジェントグラフ推論による科学的発見の高速化
- Authors: Markus J. Buehler,
- Abstract要約: 生物材料分野における1000の科学論文の集合を、詳細なオントロジ知識グラフに変換する。
問合せに使える前例のない学際的関係についての深い洞察を明らかにする。
我々の予測は、従来の生成型AI手法よりもはるかに高い斬新さ、技術的詳細、爆発能力を達成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Using generative Artificial Intelligence (AI), we transformed a set of 1,000 scientific papers in the area of biological materials into detailed ontological knowledge graphs, revealing their inherently scale-free nature. Using graph traversal path detection between dissimilar concepts based on combinatorial ranking of node similarity and betweenness centrality, we reveal deep insights into unprecedented interdisciplinary relationships that can be used to answer queries, identify gaps in knowledge, and propose never-before-seen material designs and their behaviors. One comparison revealed detailed structural parallels between biological materials and Beethoven's 9th Symphony, highlighting shared patterns of complexity through isomorphic mapping. The algorithm further created an innovative hierarchical mycelium-based composite that incorporates joint synthesis of graph sampling with principles extracted from Kandinsky's Composition VII painting, where the resulting composite reflects a balance of chaos and order, with features like adjustable porosity, mechanical strength, and complex patterned chemical functionalization. We uncover other isomorphisms across physical, biological, and artistic spheres, revealing a nuanced ontology of immanence and material flux that resonates with postmodern philosophy, and positions these interconnections within a heterarchical framework. Our findings reveal the dynamic, context-dependent interplay of entities beyond traditional hierarchical paradigms, emphasizing the significant role of individual components and their fluctuative relationships within the system. Our predictions achieve a far higher degree of novelty, technical detail and explorative capacity than conventional generative AI methods. The approach establishes a widely useful framework for innovation by revealing hidden connections that facilitate discovery.
- Abstract(参考訳): 生成人工知能 (AI) を用いて, 生物材料の領域における1000の科学論文を詳細なオントロジ知識グラフに変換し, その本質的に無スケールな性質を明らかにした。
ノード類似度と相互中心性の組合せランキングに基づく異種概念間のグラフトラバースパス検出を用いて,クエリに応答し,知識のギャップを識別し,前例のない素材設計とその動作を提案する。
ある比較では、生体材料とベートーヴェン第9交響楽団の詳細な構造的類似を明らかにし、同型写像を通して複雑さの共有パターンを強調した。
このアルゴリズムはさらに、カンディンスキーのコンポジションVII(英語版)の絵画から抽出された原理とグラフサンプリングの結合合成を取り入れた革新的な階層的な菌糸体を創り出し、結果として得られる合成物はカオスと秩序のバランスを反映し、調整可能なポロシティ、機械的強度、複雑なパターン化された化学機能化などの特徴を持つ。
我々は、物理的、生物学的、芸術的な領域にまたがる他の同型を解明し、ポストモダン哲学に共鳴する不純物と物質フラックスのニュアンスなオントロジーを明らかにし、これらの相互接続を階層的な枠組みに配置する。
本研究は,従来の階層的パラダイムを超越した実体の動的,文脈依存的な相互作用を明らかにし,個々の構成要素の意義とシステム内のゆらぎ的関係を強調した。
我々の予測は、従来の生成型AI手法よりもはるかに高い斬新さ、技術的詳細、爆発能力を達成する。
このアプローチは、発見を容易にする隠れた接続を明らかにすることによって、イノベーションのための広く有用なフレームワークを確立する。
関連論文リスト
- Unsupervised Graph Neural Architecture Search with Disentangled
Self-supervision [51.88848982611515]
教師なしグラフニューラルアーキテクチャサーチは、文献では未発見のままである。
本稿では,Distangled Self-supervised Graph Neural Architecture Searchモデルを提案する。
我々のモデルは、教師なしの方法で、いくつかのベースライン手法に対して最先端のパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2024-03-08T05:23:55Z) - Contrastive Learning for Non-Local Graphs with Multi-Resolution
Structural Views [1.4445779250002606]
本稿では,グラフ上の拡散フィルタを統合する新しい多視点コントラスト学習手法を提案する。
複数のグラフビューを拡張として組み込むことで、異種グラフの構造的等価性を捉える。
論文 参考訳(メタデータ) (2023-08-19T17:42:02Z) - CADGE: Context-Aware Dialogue Generation Enhanced with Graph-Structured Knowledge Aggregation [25.56539617837482]
コンテキスト対応グラフアテンションモデル(Context-aware GAT)を提案する。
これは、コンテキスト強化された知識集約機構を通じて、関連する知識グラフからグローバルな特徴を同化する。
実験により,本フレームワークは従来のGNNベース言語モデルよりも性能が優れていることが示された。
論文 参考訳(メタデータ) (2023-05-10T16:31:35Z) - Representation Learning for Person or Entity-centric Knowledge Graphs:
An Application in Healthcare [0.757843972001219]
本稿では、構造化データと非構造化データからエンティティ中心のKGを抽出するエンドツーエンド表現学習フレームワークを提案する。
我々は、人の複数の面を表す星型分類器を導入し、それをKG生成のガイドに利用する。
このアプローチにはいくつかの潜在的なアプリケーションがあり、オープンソースであることを強調します。
論文 参考訳(メタデータ) (2023-05-09T17:39:45Z) - Weisfeiler and Leman Go Relational [4.29881872550313]
本稿では,よく知られたGCNおよびコンポジションGCNアーキテクチャの表現力の限界について検討する。
上記の2つのアーキテクチャの制限を確実に克服する$k$-RNアーキテクチャを導入します。
論文 参考訳(メタデータ) (2022-11-30T15:56:46Z) - AIGenC: An AI generalisation model via creativity [1.933681537640272]
本稿では,創造性に関する認知理論に触発された計算モデル(AIGenC)を紹介する。
人工エージェントが変換可能な表現を学習、使用、生成するために必要なコンポーネントを配置する。
本稿では, 人工エージェントの配当効率を向上するモデルの有効性について論じる。
論文 参考訳(メタデータ) (2022-05-19T17:43:31Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNNはReinforceed, recursive, flexible neighborhood selection guided multi-relational Graph Neural Network architectureである。
RioGNNは、各関係の個々の重要性の認識により、説明性を高めた差別的なノード埋め込みを学ぶことができる。
論文 参考訳(メタデータ) (2021-04-16T04:30:06Z) - Structural Landmarking and Interaction Modelling: on Resolution Dilemmas
in Graph Classification [50.83222170524406]
解法ジレンマの統一概念に基づくグラフ分類における本質的難易度の研究」
構造ランドマークと相互作用モデリングのためのインダクティブニューラルネットワークモデルSLIM'を提案する。
論文 参考訳(メタデータ) (2020-06-29T01:01:42Z) - A Heterogeneous Graph with Factual, Temporal and Logical Knowledge for
Question Answering Over Dynamic Contexts [81.4757750425247]
動的テキスト環境における質問応答について検討する。
構築したグラフ上にグラフニューラルネットワークを構築し,エンドツーエンドでモデルをトレーニングする。
論文 参考訳(メタデータ) (2020-04-25T04:53:54Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。