論文の概要: In-situ graph reasoning and knowledge expansion using Graph-PReFLexOR
- arxiv url: http://arxiv.org/abs/2501.08120v1
- Date: Tue, 14 Jan 2025 13:52:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:26:44.848487
- Title: In-situ graph reasoning and knowledge expansion using Graph-PReFLexOR
- Title(参考訳): Graph-PReFLexorを用いたその場グラフ推論と知識拡張
- Authors: Markus J. Buehler,
- Abstract要約: グラフ推論とシンボリック抽象化を組み合わせてドメイン知識を動的に拡張するフレームワークであるGraph-PReFLexORを提案する。
強化学習に触発されて、推論は構造化されたマッピングとして定義され、タスクが知識グラフ、抽象パターン、そして最終的には最終回答を生み出す。
その結果、より優れた推論深度と適応性を示し、透明で多分野のAI駆動型発見の可能性を示している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The pursuit of automated scientific discovery has fueled progress from symbolic logic to modern AI, forging new frontiers in reasoning and pattern recognition. Transformers function as potential systems, where every possible relationship remains latent potentiality until tasks impose constraints, akin to measurement. Yet, refining their sampling requires more than probabilistic selection: solutions must conform to specific structures or rules, ensuring consistency and the invocation of general principles. We present Graph-PReFLexOR (Graph-based Preference-based Recursive Language Modeling for Exploratory Optimization of Reasoning), a framework that combines graph reasoning with symbolic abstraction to dynamically expand domain knowledge. Inspired by reinforcement learning, Graph-PReFLexOR defines reasoning as a structured mapping, where tasks yield knowledge graphs, abstract patterns, and ultimately, final answers. Inspired by category theory, it encodes concepts as nodes and their relationships as edges, supporting hierarchical inference and adaptive learning through isomorphic representations. Demonstrations include hypothesis generation, materials design, and creative reasoning, such as discovering relationships between mythological concepts like 'thin places' with materials science. We propose a 'knowledge garden growth' strategy that integrates insights across domains, promoting interdisciplinary connections. Results with a 3-billion-parameter Graph-PReFLexOR model show superior reasoning depth and adaptability, underscoring the potential for transparent, multidisciplinary AI-driven discovery. It lays the groundwork for general autonomous reasoning solutions.
- Abstract(参考訳): 自動科学的発見の追求は、記号論理から現代のAIへの進歩を加速させ、推論とパターン認識において新たなフロンティアを築き上げている。
トランスフォーマーは潜在的なシステムとして機能し、あらゆる可能な関係は、測定と同様にタスクが制約を課すまで潜在可能性を維持する。
解決策は特定の構造や規則に適合し、一貫性と一般的な原則の呼び出しを保証する必要がある。
本稿では,グラフ推論と記号的抽象化を組み合わせることで,ドメイン知識を動的に拡張するフレームワークであるGraph-PReFLexOR(Graph-based Preference-based Recursive Language Modeling for Exploratory Optimization of Reasoning)を提案する。
Graph-PReFLexorは強化学習にヒントを得て、推論を構造化マッピングとして定義し、そこではタスクが知識グラフ、抽象パターン、そして最終的な答えを生成する。
圏論に触発され、概念をノードとして、それらの関係をエッジとしてエンコードし、同型表現を通じて階層的推論と適応学習をサポートする。
仮説の生成、材料設計、創造的推論、例えば「薄い場所」のような神話的概念と物質科学の関係の発見などである。
ドメイン間の洞察を統合し,学際的つながりを促進する「知識庭の成長戦略」を提案する。
3ビリオンパラメータグラフ-PReFLexORモデルによる結果は、より優れた推論深度と適応性を示し、透明で多分野のAI駆動型発見の可能性を示している。
それは、一般的な自律的推論ソリューションの基礎を成している。
関連論文リスト
- Towards Graph Foundation Models: The Perspective of Zero-shot Reasoning on Knowledge Graphs [14.392577069212292]
我々は、ゼロショット学習を用いて、多様なグラフタスクを効果的に一般化する統合グラフ推論フレームワークSCOREを紹介する。
SCOREを38種類のグラフデータセットを用いて評価し、ノードレベル、リンクレベル、グラフレベルのタスクを複数のドメインでカバーする。
論文 参考訳(メタデータ) (2024-10-16T14:26:08Z) - Foundations and Frontiers of Graph Learning Theory [81.39078977407719]
グラフ学習の最近の進歩は、複雑な構造を持つデータを理解し分析する方法に革命をもたらした。
グラフニューラルネットワーク(GNN)、すなわちグラフ表現を学習するために設計されたニューラルネットワークアーキテクチャは、一般的なパラダイムとなっている。
本稿では,グラフ学習モデルに固有の近似と学習行動に関する理論的基礎とブレークスルーについて概説する。
論文 参考訳(メタデータ) (2024-07-03T14:07:41Z) - G-SAP: Graph-based Structure-Aware Prompt Learning over Heterogeneous Knowledge for Commonsense Reasoning [8.02547453169677]
本稿では,G-SAP という名称のコモンセンス推論のためのグラフベース構造認識プロンプト学習モデルを提案する。
特にエビデンスグラフは、ConceptNet、Wikipedia、Cambridge Dictionaryといった複数の知識ソースを統合することで構築される。
その結果、既存のモデル、特にOpenbookQAデータセット上のSoTA LM+GNNsモデルよりも6.12%改善された。
論文 参考訳(メタデータ) (2024-05-09T08:28:12Z) - Accelerating Scientific Discovery with Generative Knowledge Extraction, Graph-Based Representation, and Multimodal Intelligent Graph Reasoning [0.0]
我々は1000の科学論文からなるデータセットを、オントロジ知識グラフに変換した。
我々はノード度を計算し、コミュニティと接続性を同定し、クラスタリング係数とピボットノード間の重心性を評価した。
グラフは本質的に無スケールの性質を持ち、高連結であり、グラフ推論に使用できる。
論文 参考訳(メタデータ) (2024-03-18T17:30:27Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEGは、神経誘導学習と論理推論をリッチデータとシンボリック知識の両方に統合する、全体論的視覚意味論である。
ファジィ論理に基づく連続的な緩和の間、論理式はデータとニューラルな計算グラフに基礎を置いており、論理によるネットワークトレーニングを可能にする。
これらの設計によりLOGICSEGは、既存のセグメンテーションモデルに容易に統合できる汎用的でコンパクトなニューラル論理マシンとなる。
論文 参考訳(メタデータ) (2023-09-24T05:43:19Z) - Intrinsically motivated graph exploration using network theories of
human curiosity [71.2717061477241]
本稿では,人間の好奇心の2つの理論によるグラフ構造化データの探索手法を提案する。
提案した特徴を,グラフニューラルネットワークに基づく強化学習の報奨として利用する。
論文 参考訳(メタデータ) (2023-07-11T01:52:08Z) - DeepGAR: Deep Graph Learning for Analogical Reasoning [31.679051203515655]
アナロジカル推論(アナロジカル推論、Analogical reasoning)は、対象物から対象物への対応関係を発見し、マッピングする過程である。
SMT(Structure-Mapping Theory)は、ターゲットとベースの両方をグラフに抽象化し、アナログ推論の認知過程を形成する。
本稿では,認知理論に基づく制約を仮定することにより,ソースドメインとターゲットドメインの対応を識別する,分析推論(DeepGAR)のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-19T23:12:58Z) - Graph Collaborative Reasoning [18.45161138837384]
グラフ協調推論(GCR)は、論理的推論の観点からグラフ上の関係推論に隣接リンク情報を使用することができる。
そこで我々は,グラフ構造を論理式に変換する簡単な手法を提案し,リンク予測タスクをニューラルネットワーク推論問題に変換する。
本研究の有効性を示すため,一般的なベンチマークデータセットに基づくリンク予測やレコメンデーションなどのグラフ関連タスクの実験を行った。
論文 参考訳(メタデータ) (2021-12-27T14:27:58Z) - pix2rule: End-to-end Neuro-symbolic Rule Learning [84.76439511271711]
本稿では,画像のオブジェクトへの処理,学習関係,論理規則に関する完全なニューロシンボリックな手法を提案する。
主な貢献は、シンボリックリレーションとルールを抽出できるディープラーニングアーキテクチャにおける差別化可能なレイヤである。
我々のモデルは最先端のシンボリックラーナーを超えてスケールし、ディープリレーショナルニューラルネットワークアーキテクチャよりも優れていることを実証する。
論文 参考訳(メタデータ) (2021-06-14T15:19:06Z) - GraphOpt: Learning Optimization Models of Graph Formation [72.75384705298303]
本稿では,グラフ構造形成の暗黙的モデルを学ぶエンドツーエンドフレームワークを提案し,その基盤となる最適化機構を明らかにする。
学習した目的は、観測されたグラフプロパティの説明として機能し、ドメイン内の異なるグラフを渡すために自分自身を貸すことができる。
GraphOptは、グラフ内のリンク生成をシーケンシャルな意思決定プロセスとして、最大エントロピー逆強化学習アルゴリズムを用いて解決する。
論文 参考訳(メタデータ) (2020-07-07T16:51:39Z) - A Heterogeneous Graph with Factual, Temporal and Logical Knowledge for
Question Answering Over Dynamic Contexts [81.4757750425247]
動的テキスト環境における質問応答について検討する。
構築したグラフ上にグラフニューラルネットワークを構築し,エンドツーエンドでモデルをトレーニングする。
論文 参考訳(メタデータ) (2020-04-25T04:53:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。