論文の概要: Accelerating Scientific Discovery with Generative Knowledge Extraction, Graph-Based Representation, and Multimodal Intelligent Graph Reasoning
- arxiv url: http://arxiv.org/abs/2403.11996v3
- Date: Mon, 10 Jun 2024 19:06:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 22:13:02.371680
- Title: Accelerating Scientific Discovery with Generative Knowledge Extraction, Graph-Based Representation, and Multimodal Intelligent Graph Reasoning
- Title(参考訳): 生成的知識抽出、グラフベース表現、マルチモーダル・インテリジェントグラフ推論による科学的発見の高速化
- Authors: Markus J. Buehler,
- Abstract要約: 我々は1000の科学論文からなるデータセットを、オントロジ知識グラフに変換した。
我々はノード度を計算し、コミュニティと接続性を同定し、クラスタリング係数とピボットノード間の重心性を評価した。
グラフは本質的に無スケールの性質を持ち、高連結であり、グラフ推論に使用できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Leveraging generative Artificial Intelligence (AI), we have transformed a dataset comprising 1,000 scientific papers into an ontological knowledge graph. Through an in-depth structural analysis, we have calculated node degrees, identified communities and connectivities, and evaluated clustering coefficients and betweenness centrality of pivotal nodes, uncovering fascinating knowledge architectures. The graph has an inherently scale-free nature, is highly connected, and can be used for graph reasoning by taking advantage of transitive and isomorphic properties that reveal unprecedented interdisciplinary relationships that can be used to answer queries, identify gaps in knowledge, propose never-before-seen material designs, and predict material behaviors. We compute deep node embeddings for combinatorial node similarity ranking for use in a path sampling strategy links dissimilar concepts that have previously not been related. One comparison revealed structural parallels between biological materials and Beethoven's 9th Symphony, highlighting shared patterns of complexity through isomorphic mapping. In another example, the algorithm proposed a hierarchical mycelium-based composite based on integrating path sampling with principles extracted from Kandinsky's 'Composition VII' painting. The resulting material integrates an innovative set of concepts that include a balance of chaos/order, adjustable porosity, mechanical strength, and complex patterned chemical functionalization. We uncover other isomorphisms across science, technology and art, revealing a nuanced ontology of immanence that reveal a context-dependent heterarchical interplay of constituents. Graph-based generative AI achieves a far higher degree of novelty, explorative capacity, and technical detail, than conventional approaches and establishes a widely useful framework for innovation by revealing hidden connections.
- Abstract(参考訳): 生成人工知能(AI)を活用して、1000の科学論文からなるデータセットをオントロジ知識グラフに変換する。
詳細な構造解析を通じて,ノード度を計算し,コミュニティとコネクティビティを同定し,中心ノードのクラスタリング係数と相互中心性を評価し,興味深い知識アーキテクチャを明らかにした。
このグラフは本質的にはスケールのない性質を持ち、高度に連結されており、推移的および同型性を利用してグラフ推論に使用することができる。
経路サンプリング戦略における組み合わせノード類似度ランキングのためのディープノード埋め込みを計算し、これまで関係のない異種概念をリンクする。
ある比較では、生体材料とベートーヴェンの第9交響曲の構造的類似が明らかとなり、同型写像による複雑さの共有パターンが強調された。
別の例として、アルゴリズムは、経路サンプリングとカンディンスキーの「コンポジションVII」の絵から抽出された原理を統合した階層的な菌糸体に基づく合成法を提案した。
得られた材料は、カオス/秩序のバランス、調整可能なポロシティ、機械的強度、複雑なパターン化された化学機能化を含む革新的な概念のセットを統合している。
我々は、科学、技術、芸術にまたがる他のアイソモーフィズムを発見し、構成員の文脈に依存したヘテロ構造的相互作用を明らかにする、無実のニュアンスなオントロジーを明らかにした。
グラフベースの生成AIは、従来のアプローチよりもはるかに高度な斬新さ、爆発能力、技術的詳細を実現し、隠れた接続を明らかにすることによって、イノベーションのための広く有用なフレームワークを確立する。
関連論文リスト
- Unsupervised Graph Neural Architecture Search with Disentangled
Self-supervision [51.88848982611515]
教師なしグラフニューラルアーキテクチャサーチは、文献では未発見のままである。
本稿では,Distangled Self-supervised Graph Neural Architecture Searchモデルを提案する。
我々のモデルは、教師なしの方法で、いくつかのベースライン手法に対して最先端のパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2024-03-08T05:23:55Z) - Contrastive Learning for Non-Local Graphs with Multi-Resolution
Structural Views [1.4445779250002606]
本稿では,グラフ上の拡散フィルタを統合する新しい多視点コントラスト学習手法を提案する。
複数のグラフビューを拡張として組み込むことで、異種グラフの構造的等価性を捉える。
論文 参考訳(メタデータ) (2023-08-19T17:42:02Z) - CADGE: Context-Aware Dialogue Generation Enhanced with Graph-Structured Knowledge Aggregation [25.56539617837482]
コンテキスト対応グラフアテンションモデル(Context-aware GAT)を提案する。
これは、コンテキスト強化された知識集約機構を通じて、関連する知識グラフからグローバルな特徴を同化する。
実験により,本フレームワークは従来のGNNベース言語モデルよりも性能が優れていることが示された。
論文 参考訳(メタデータ) (2023-05-10T16:31:35Z) - Representation Learning for Person or Entity-centric Knowledge Graphs:
An Application in Healthcare [0.757843972001219]
本稿では、構造化データと非構造化データからエンティティ中心のKGを抽出するエンドツーエンド表現学習フレームワークを提案する。
我々は、人の複数の面を表す星型分類器を導入し、それをKG生成のガイドに利用する。
このアプローチにはいくつかの潜在的なアプリケーションがあり、オープンソースであることを強調します。
論文 参考訳(メタデータ) (2023-05-09T17:39:45Z) - Weisfeiler and Leman Go Relational [4.29881872550313]
本稿では,よく知られたGCNおよびコンポジションGCNアーキテクチャの表現力の限界について検討する。
上記の2つのアーキテクチャの制限を確実に克服する$k$-RNアーキテクチャを導入します。
論文 参考訳(メタデータ) (2022-11-30T15:56:46Z) - AIGenC: An AI generalisation model via creativity [1.933681537640272]
本稿では,創造性に関する認知理論に触発された計算モデル(AIGenC)を紹介する。
人工エージェントが変換可能な表現を学習、使用、生成するために必要なコンポーネントを配置する。
本稿では, 人工エージェントの配当効率を向上するモデルの有効性について論じる。
論文 参考訳(メタデータ) (2022-05-19T17:43:31Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNNはReinforceed, recursive, flexible neighborhood selection guided multi-relational Graph Neural Network architectureである。
RioGNNは、各関係の個々の重要性の認識により、説明性を高めた差別的なノード埋め込みを学ぶことができる。
論文 参考訳(メタデータ) (2021-04-16T04:30:06Z) - Structural Landmarking and Interaction Modelling: on Resolution Dilemmas
in Graph Classification [50.83222170524406]
解法ジレンマの統一概念に基づくグラフ分類における本質的難易度の研究」
構造ランドマークと相互作用モデリングのためのインダクティブニューラルネットワークモデルSLIM'を提案する。
論文 参考訳(メタデータ) (2020-06-29T01:01:42Z) - A Heterogeneous Graph with Factual, Temporal and Logical Knowledge for
Question Answering Over Dynamic Contexts [81.4757750425247]
動的テキスト環境における質問応答について検討する。
構築したグラフ上にグラフニューラルネットワークを構築し,エンドツーエンドでモデルをトレーニングする。
論文 参考訳(メタデータ) (2020-04-25T04:53:54Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。