Supervised Fine-Tuning as Inverse Reinforcement Learning
- URL: http://arxiv.org/abs/2403.12017v1
- Date: Mon, 18 Mar 2024 17:52:57 GMT
- Title: Supervised Fine-Tuning as Inverse Reinforcement Learning
- Authors: Hao Sun,
- Abstract summary: The prevailing approach to aligning Large Language Models (LLMs) typically relies on human or AI feedback.
In our work, we question the efficacy of such datasets and explore various scenarios where alignment with expert demonstrations proves more realistic.
- Score: 8.044033685073003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The prevailing approach to aligning Large Language Models (LLMs) typically relies on human or AI feedback and assumes access to specific types of preference datasets. In our work, we question the efficacy of such datasets and explore various scenarios where alignment with expert demonstrations proves more realistic. We build a sequential decision-making framework to formulate the problem of aligning LLMs using demonstration datasets. Drawing insights from inverse reinforcement learning and imitation learning, we introduce various approaches for divergence minimization in the LLM alignment tasks. Our analysis highlights the mass-covering and mode-seeking behaviors of these different approaches. Inclusively, we examine the pros and cons of the classical supervised fine-tuning method, elaborating on scenarios where different methods shine.
Related papers
- Fair In-Context Learning via Latent Concept Variables [17.216196320585922]
Large language models (LLMs) can inherit social bias and discrimination from their pre-training data.
We design data augmentation strategies that reduce correlation between predictive outcomes and sensitive variables helping to promote fairness during latent concept learning.
arXiv Detail & Related papers (2024-11-04T23:10:05Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Towards a Unified View of Preference Learning for Large Language Models: A Survey [88.66719962576005]
Large Language Models (LLMs) exhibit remarkably powerful capabilities.
One of the crucial factors to achieve success is aligning the LLM's output with human preferences.
We decompose all the strategies in preference learning into four components: model, data, feedback, and algorithm.
arXiv Detail & Related papers (2024-09-04T15:11:55Z) - Probing the Decision Boundaries of In-context Learning in Large Language Models [31.977886254197138]
We propose a new mechanism to probe and understand in-context learning from the lens of decision boundaries for in-context binary classification.
To our surprise, we find that the decision boundaries learned by current LLMs in simple binary classification tasks are often irregular and non-smooth.
arXiv Detail & Related papers (2024-06-17T06:00:24Z) - The Common Stability Mechanism behind most Self-Supervised Learning
Approaches [64.40701218561921]
We provide a framework to explain the stability mechanism of different self-supervised learning techniques.
We discuss the working mechanism of contrastive techniques like SimCLR, non-contrastive techniques like BYOL, SWAV, SimSiam, Barlow Twins, and DINO.
We formulate different hypotheses and test them using the Imagenet100 dataset.
arXiv Detail & Related papers (2024-02-22T20:36:24Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
Reasoning in mathematical domains remains a significant challenge for small language models (LMs)
We introduce a new method that exploits existing mathematical problem datasets with diverse annotation styles.
Experimental results show that our strategy enables a LLaMA-7B model to outperform prior approaches.
arXiv Detail & Related papers (2023-07-16T05:41:53Z) - Iterative Forward Tuning Boosts In-Context Learning in Language Models [88.25013390669845]
In this study, we introduce a novel two-stage framework to boost in-context learning in large language models (LLMs)
Specifically, our framework delineates the ICL process into two distinct stages: Deep-Thinking and test stages.
The Deep-Thinking stage incorporates a unique attention mechanism, i.e., iterative enhanced attention, which enables multiple rounds of information accumulation.
arXiv Detail & Related papers (2023-05-22T13:18:17Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
Decision making algorithms are used in a multitude of different applications.
Deep learning approaches that use highly parametric architectures tuned from data without relying on mathematical models are becoming increasingly popular.
Model-based optimization and data-centric deep learning are often considered to be distinct disciplines.
arXiv Detail & Related papers (2022-05-05T13:40:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.