論文の概要: VFusion3D: Learning Scalable 3D Generative Models from Video Diffusion Models
- arxiv url: http://arxiv.org/abs/2403.12034v2
- Date: Thu, 18 Jul 2024 21:22:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 23:37:22.507715
- Title: VFusion3D: Learning Scalable 3D Generative Models from Video Diffusion Models
- Title(参考訳): VFusion3D:ビデオ拡散モデルからスケーラブルな3D生成モデルを学ぶ
- Authors: Junlin Han, Filippos Kokkinos, Philip Torr,
- Abstract要約: 本稿では,事前学習ビデオ拡散モデルを用いたスケーラブルな3次元生成モデル構築手法を提案する。
微調整により多視点生成能力を解放することにより、大規模な合成多視点データセットを生成し、フィードフォワード3D生成モデルを訓練する。
提案したモデルであるVFusion3Dは、ほぼ3Mの合成マルチビューデータに基づいて訓練され、単一の画像から数秒で3Dアセットを生成することができる。
- 参考スコア(独自算出の注目度): 20.084928490309313
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel method for building scalable 3D generative models utilizing pre-trained video diffusion models. The primary obstacle in developing foundation 3D generative models is the limited availability of 3D data. Unlike images, texts, or videos, 3D data are not readily accessible and are difficult to acquire. This results in a significant disparity in scale compared to the vast quantities of other types of data. To address this issue, we propose using a video diffusion model, trained with extensive volumes of text, images, and videos, as a knowledge source for 3D data. By unlocking its multi-view generative capabilities through fine-tuning, we generate a large-scale synthetic multi-view dataset to train a feed-forward 3D generative model. The proposed model, VFusion3D, trained on nearly 3M synthetic multi-view data, can generate a 3D asset from a single image in seconds and achieves superior performance when compared to current SOTA feed-forward 3D generative models, with users preferring our results over 90% of the time.
- Abstract(参考訳): 本稿では,事前学習ビデオ拡散モデルを用いたスケーラブルな3次元生成モデル構築手法を提案する。
基礎3D生成モデルの開発における主要な障害は、3Dデータの可用性の制限である。
画像、テキスト、ビデオとは異なり、3Dデータは容易にアクセスできず、入手が困難である。
この結果、他の種類のデータと比較すると、大きな差が生じる。
そこで本研究では,3次元データの知識源として,大量のテキスト,画像,ビデオで訓練されたビデオ拡散モデルを提案する。
微調整により多視点生成能力を解放することにより、大規模な合成多視点データセットを生成し、フィードフォワード3D生成モデルを訓練する。
提案するモデルであるVFusion3Dは,約3Mの合成マルチビューデータに基づいてトレーニングされ,1枚の画像から1秒で3Dアセットを生成し,現在のSOTAフィードフォワード3D生成モデルと比較して優れた性能が得られる。
関連論文リスト
- DiffSplat: Repurposing Image Diffusion Models for Scalable Gaussian Splat Generation [33.62074896816882]
DiffSplatは,大規模テキスト・画像拡散モデルを用いて3次元ガウススプラットを生成する新しい3次元生成フレームワークである。
従来の3D生成モデルと異なり、Webスケールの2D事前を効果的に活用しつつ、統一モデルにおける3D一貫性を維持している。
これらの格子上の正規拡散損失と合わせて、3Dレンダリング損失を導入し、任意のビューの3Dコヒーレンスを促進する。
論文 参考訳(メタデータ) (2025-01-28T07:38:59Z) - You See it, You Got it: Learning 3D Creation on Pose-Free Videos at Scale [42.67300636733286]
本研究では,オープンワールド3D制作のための大規模インターネットビデオを用いた視覚条件付き多視点拡散モデルであるSee3Dを提案する。
このモデルは、広大かつ急速に成長するビデオデータから視覚的内容だけを見ることによって、3Dの知識を得ることを目的としている。
低コストでスケーラブルなビデオデータに基づいて訓練されたSee3Dは、ゼロショットおよびオープンワールド生成能力に優れることを示す。
論文 参考訳(メタデータ) (2024-12-09T17:44:56Z) - Structured 3D Latents for Scalable and Versatile 3D Generation [28.672494137267837]
汎用的で高品質な3Dアセット作成のための新しい3D生成手法を提案する。
基本となるのは、異なる出力フォーマットへのデコードを可能にする、構造化されたLATent表現である。
これは、疎人口の少ない3Dグリッドと、強力な視覚基盤モデルから抽出された濃密な多視点視覚特徴を統合することで実現される。
論文 参考訳(メタデータ) (2024-12-02T13:58:38Z) - 3D-VirtFusion: Synthetic 3D Data Augmentation through Generative Diffusion Models and Controllable Editing [52.68314936128752]
本研究では,事前学習された大規模基盤モデルのパワーを活用して,3次元ラベル付きトレーニングデータを自動的に生成する新しいパラダイムを提案する。
各ターゲットセマンティッククラスに対して、まず、拡散モデルとチャットGPT生成したテキストプロンプトを介して、様々な構造と外観の1つのオブジェクトの2D画像を生成する。
我々は、これらの拡張画像を3Dオブジェクトに変換し、ランダムな合成によって仮想シーンを構築する。
論文 参考訳(メタデータ) (2024-08-25T09:31:22Z) - DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
テキストプロンプトから高品質な3Dアセットを作成するための拡散型3D生成モデルであるDIRECT-3Dを提案する。
我々のモデルは、広範に騒々しく不整合な3D資産で直接訓練されている。
単一クラス生成とテキスト・ツー・3D生成の両方で最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-06-06T17:58:15Z) - SuperGaussian: Repurposing Video Models for 3D Super Resolution [67.19266415499139]
本稿では,幾何学的および外観的詳細を付加することにより,粗い3次元モデルをアップサンプルする,単純でモジュラーで汎用的な手法を提案する。
既存の3次元超解像モデルを直接再利用できることを実証する。
論文 参考訳(メタデータ) (2024-06-02T03:44:50Z) - V3D: Video Diffusion Models are Effective 3D Generators [19.33837029942662]
本稿では、事前学習したビデオ拡散モデルの世界シミュレーション能力を活用して、3D生成を容易にするV3Dを紹介する。
これを利用して、最先端のビデオ拡散モデルを微調整して、1つの画像が与えられた物体を囲む360度軌道フレームを生成することができる。
提案手法はシーンレベルの新規ビュー合成に拡張可能であり,スパース・インプット・ビューによるカメラ・パスの正確な制御を実現する。
論文 参考訳(メタデータ) (2024-03-11T14:03:36Z) - 3DTopia: Large Text-to-3D Generation Model with Hybrid Diffusion Priors [85.11117452560882]
本稿では,2段階のテキスト・ツー・3D生成システムである3DTopiaについて述べる。
3次元データから直接学習される3次元拡散の第1段階のサンプルは、テキスト条件付き3次元潜伏拡散モデルを用いており、高速なプロトタイピングのための粗い3次元サンプルを迅速に生成する。
第2段階は2次元拡散前処理を利用して、粗い3次元モデルのテクスチャを第1段階からさらに洗練し、高品質なテクスチャ生成のための潜時空間と画素空間の最適化からなる。
論文 参考訳(メタデータ) (2024-03-04T17:26:28Z) - HoloDiffusion: Training a 3D Diffusion Model using 2D Images [71.1144397510333]
我々は,2次元画像のみを監督のために配置した,エンドツーエンドでトレーニング可能な新しい拡散装置を導入する。
我々の拡散モデルはスケーラブルで、頑健に訓練されており、既存の3次元生成モデルへのアプローチに対して、サンプルの品質と忠実さの点で競争力があることを示す。
論文 参考訳(メタデータ) (2023-03-29T07:35:56Z) - Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis
and Analysis [143.22192229456306]
本稿では,体積形状を表す3次元エネルギーモデルを提案する。
提案モデルの利点は6倍である。
実験により,提案モデルが高品質な3d形状パターンを生成できることが実証された。
論文 参考訳(メタデータ) (2020-12-25T06:09:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。