論文の概要: V3D: Video Diffusion Models are Effective 3D Generators
- arxiv url: http://arxiv.org/abs/2403.06738v1
- Date: Mon, 11 Mar 2024 14:03:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-12 18:54:11.054406
- Title: V3D: Video Diffusion Models are Effective 3D Generators
- Title(参考訳): V3D:ビデオ拡散モデルが有効な3Dジェネレータ
- Authors: Zilong Chen, Yikai Wang, Feng Wang, Zhengyi Wang, Huaping Liu
- Abstract要約: 本稿では、事前学習したビデオ拡散モデルの世界シミュレーション能力を活用して、3D生成を容易にするV3Dを紹介する。
これを利用して、最先端のビデオ拡散モデルを微調整して、1つの画像が与えられた物体を囲む360度軌道フレームを生成することができる。
提案手法はシーンレベルの新規ビュー合成に拡張可能であり,スパース・インプット・ビューによるカメラ・パスの正確な制御を実現する。
- 参考スコア(独自算出の注目度): 19.33837029942662
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic 3D generation has recently attracted widespread attention. Recent
methods have greatly accelerated the generation speed, but usually produce
less-detailed objects due to limited model capacity or 3D data. Motivated by
recent advancements in video diffusion models, we introduce V3D, which
leverages the world simulation capacity of pre-trained video diffusion models
to facilitate 3D generation. To fully unleash the potential of video diffusion
to perceive the 3D world, we further introduce geometrical consistency prior
and extend the video diffusion model to a multi-view consistent 3D generator.
Benefiting from this, the state-of-the-art video diffusion model could be
fine-tuned to generate 360degree orbit frames surrounding an object given a
single image. With our tailored reconstruction pipelines, we can generate
high-quality meshes or 3D Gaussians within 3 minutes. Furthermore, our method
can be extended to scene-level novel view synthesis, achieving precise control
over the camera path with sparse input views. Extensive experiments demonstrate
the superior performance of the proposed approach, especially in terms of
generation quality and multi-view consistency. Our code is available at
https://github.com/heheyas/V3D
- Abstract(参考訳): 自動3D生成は近年広く注目を集めている。
近年の手法では生成速度が大幅に向上しているが, モデル容量や3次元データに制限があるため, 精度の低いオブジェクトを生成することが多い。
近年の映像拡散モデルの発展にともなうV3Dは,事前学習した映像拡散モデルの世界シミュレーション能力を活用して3D生成を容易にする。
映像拡散の可能性を完全に解き放つために,幾何学的整合性を導入するとともに,映像拡散モデルを多視点一貫した3Dジェネレータに拡張する。
これにより、最先端のビデオ拡散モデルを微調整して、1枚の画像が与えられた物体を取り囲む360度の軌道フレームを生成することができる。
カスタマイズされた再構築パイプラインによって、高品質なメッシュや3Dガウスを3分で生成できます。
さらに,提案手法をシーンレベルの新規ビュー合成に拡張でき,入力ビューの少ないカメラパスを高精度に制御できる。
広範な実験は、特に生成品質とマルチビュー一貫性の観点から、提案手法の優れた性能を示す。
私たちのコードはhttps://github.com/heheyas/V3Dで利用可能です。
関連論文リスト
- Baking Gaussian Splatting into Diffusion Denoiser for Fast and Scalable Single-stage Image-to-3D Generation [45.95218923564575]
単一視点からのオブジェクトおよびシーン生成のための新しい1段3次元拡散モデルDiffusionGSを提案する。
実験の結果,PSNRでは2.20dB,FIDでは23.25dB,SOTA法では5倍以上の速度(A100 GPUでは6s)が得られた。
論文 参考訳(メタデータ) (2024-11-21T18:21:24Z) - Hi3D: Pursuing High-Resolution Image-to-3D Generation with Video Diffusion Models [112.2625368640425]
High- resolution Image-to-3D model (Hi3D) はビデオ拡散に基づく新しいパラダイムであり、単一の画像を3D対応シーケンシャル画像生成としてマルチビュー画像に再定義する。
Hi3Dは事前に学習した映像拡散モデルを3D対応で強化し、低解像度のテクスチャディテールを持つマルチビュー画像を生成する。
論文 参考訳(メタデータ) (2024-09-11T17:58:57Z) - SuperGaussian: Repurposing Video Models for 3D Super Resolution [67.19266415499139]
本稿では,幾何学的および外観的詳細を付加することにより,粗い3次元モデルをアップサンプルする,単純でモジュラーで汎用的な手法を提案する。
既存の3次元超解像モデルを直接再利用できることを実証する。
論文 参考訳(メタデータ) (2024-06-02T03:44:50Z) - VFusion3D: Learning Scalable 3D Generative Models from Video Diffusion Models [20.084928490309313]
本稿では,事前学習ビデオ拡散モデルを用いたスケーラブルな3次元生成モデル構築手法を提案する。
微調整により多視点生成能力を解放することにより、大規模な合成多視点データセットを生成し、フィードフォワード3D生成モデルを訓練する。
提案したモデルであるVFusion3Dは、ほぼ3Mの合成マルチビューデータに基づいて訓練され、単一の画像から数秒で3Dアセットを生成することができる。
論文 参考訳(メタデータ) (2024-03-18T17:59:12Z) - LN3Diff: Scalable Latent Neural Fields Diffusion for Speedy 3D Generation [73.36690511083894]
本稿では,LN3Diffと呼ばれる新しいフレームワークを導入し,統一された3次元拡散パイプラインに対処する。
提案手法では,3次元アーキテクチャと変分オートエンコーダを用いて,入力画像を構造化されたコンパクトな3次元潜在空間に符号化する。
3次元生成のためのShapeNetの最先端性能を実現し,モノクロ3次元再構成と条件付き3次元生成において優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-18T17:54:34Z) - 3D-SceneDreamer: Text-Driven 3D-Consistent Scene Generation [51.64796781728106]
本稿では,2次元拡散モデル以前の自然画像と,現在のシーンのグローバルな3次元情報を利用して,高品質で新しいコンテンツを合成する生成的精細化ネットワークを提案する。
提案手法は,視覚的品質と3次元の整合性を改善した多種多様なシーン生成と任意のカメラトラジェクトリをサポートする。
論文 参考訳(メタデータ) (2024-03-14T14:31:22Z) - Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior [57.986512832738704]
本稿では,2次元拡散モデルを再学習することなく,抽出した参照オブジェクトから3次元先行を明示的に注入する,電流パイプラインを備えた新しいフレームワークSculpt3Dを提案する。
具体的には、スパース線サンプリングによるキーポイントの監督により、高品質で多様な3次元形状を保証できることを実証する。
これら2つの分離された設計は、参照オブジェクトからの3D情報を利用して、2D拡散モデルの生成品質を保ちながら、3Dオブジェクトを生成する。
論文 参考訳(メタデータ) (2024-03-14T07:39:59Z) - One-2-3-45++: Fast Single Image to 3D Objects with Consistent Multi-View
Generation and 3D Diffusion [32.29687304798145]
One-2-3-45++は、1つの画像を1分で詳細な3Dテクスチャメッシュに変換する革新的な方法である。
提案手法は,2次元拡散モデルに埋め込まれた広範囲な知識を,貴重な3次元データから活用することを目的としている。
論文 参考訳(メタデータ) (2023-11-14T03:40:25Z) - GaussianDreamer: Fast Generation from Text to 3D Gaussians by Bridging 2D and 3D Diffusion Models [102.22388340738536]
2Dおよび3D拡散モデルは、プロンプトに基づいて適切な3Dオブジェクトを生成することができる。
3次元拡散モデルには優れた3次元整合性があるが、トレーニング可能な3次元データは高価で入手が難しいため、その品質と一般化は制限されている。
本稿では,2種類の拡散モデルから近年の明示的かつ効率的な3次元ガウススプラッティング表現を通じて電力を橋渡ししようとする。
論文 参考訳(メタデータ) (2023-10-12T17:22:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。