論文の概要: GPT-4V(ision) Unsuitable for Clinical Care and Education: A Clinician-Evaluated Assessment
- arxiv url: http://arxiv.org/abs/2403.12046v1
- Date: Tue, 14 Nov 2023 17:06:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 07:46:43.527344
- Title: GPT-4V(ision) Unsuitable for Clinical Care and Education: A Clinician-Evaluated Assessment
- Title(参考訳): GPT-4V(ision)は臨床医療・教育に適さない:臨床医による評価
- Authors: Senthujan Senkaiahliyan, Augustin Toma, Jun Ma, An-Wen Chan, Andrew Ha, Kevin R. An, Hrishikesh Suresh, Barry Rubin, Bo Wang,
- Abstract要約: GPT-4Vは画像の一般的な解釈のために最近開発された。
また, GPT-4Vの熟練度は, 様々な医療条件で評価された。
GPT-4Vの診断精度と臨床的意思決定能力は乏しく、患者の安全性にリスクをもたらす。
- 参考スコア(独自算出の注目度): 6.321623278767821
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: OpenAI's large multimodal model, GPT-4V(ision), was recently developed for general image interpretation. However, less is known about its capabilities with medical image interpretation and diagnosis. Board-certified physicians and senior residents assessed GPT-4V's proficiency across a range of medical conditions using imaging modalities such as CT scans, MRIs, ECGs, and clinical photographs. Although GPT-4V is able to identify and explain medical images, its diagnostic accuracy and clinical decision-making abilities are poor, posing risks to patient safety. Despite the potential that large language models may have in enhancing medical education and delivery, the current limitations of GPT-4V in interpreting medical images reinforces the importance of appropriate caution when using it for clinical decision-making.
- Abstract(参考訳): OpenAIの大規模マルチモーダルモデルであるGPT-4V(ision)は、画像の一般的な解釈のために最近開発された。
しかし、医用画像の解釈と診断の能力についてはあまり知られていない。
検診医や高齢者は、CTスキャン、MRI、心電図、臨床写真などの画像モダリティを用いて、GPT-4Vの習熟度を幅広い医療条件で評価した。
GPT-4Vは医用画像の識別と説明が可能であるが、診断精度と臨床診断能力は乏しく、患者の安全性にリスクをもたらす。
大規模言語モデルが医療教育やデリバリーの強化に寄与する可能性にもかかわらず、医学画像の解釈におけるGPT-4Vの現在の限界は、臨床的な意思決定に使用する際の適切な注意力の重要性を増している。
関連論文リスト
- Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
特にGemini-Vision-Series (Gemini) と GPT-4-Series (GPT-4) は、コンピュータビジョンのための人工知能のパラダイムシフトを象徴している。
本研究は,14の医用画像データセットを対象に,Gemini,GPT-4,および4つの一般的な大規模モデルの性能評価を行った。
論文 参考訳(メタデータ) (2024-07-08T09:08:42Z) - Hidden flaws behind expert-level accuracy of multimodal GPT-4 vision in medicine [15.491432387608112]
GPT-4V(Generative Pre-trained Transformer 4 with Vision)は、医学的課題において、医師よりも優れる。
本研究は,GPT-4Vのイメージ理解の理論的根拠,医用知識の想起,ステップバイステップのマルチモーダル推論を包括的に分析することにより,現在の範囲を拡大する。
論文 参考訳(メタデータ) (2024-01-16T14:41:20Z) - Mining Gaze for Contrastive Learning toward Computer-Assisted Diagnosis [61.089776864520594]
医用画像のテキストレポートの代替としてアイトラッキングを提案する。
医用画像を読み,診断する際に放射線科医の視線を追跡することにより,その視覚的注意と臨床的理由を理解することができる。
対照的な学習フレームワークのためのプラグイン・アンド・プレイモジュールとして,McGIP (McGIP) を導入した。
論文 参考訳(メタデータ) (2023-12-11T02:27:45Z) - Enhancing Medical Task Performance in GPT-4V: A Comprehensive Study on
Prompt Engineering Strategies [28.98518677093905]
OpenAIの最新大型ビジョン言語モデルであるGPT-4Vは、医療応用の可能性についてかなりの関心を集めている。
最近の研究や内部レビューでは、専門的な医療業務における過小評価が強調されている。
本稿では,GPT-4Vの医療機能の境界,特に内視鏡,CT,MRIなどの複雑な画像データ処理について検討する。
論文 参考訳(メタデータ) (2023-12-07T15:05:59Z) - Holistic Evaluation of GPT-4V for Biomedical Imaging [113.46226609088194]
GPT-4Vはコンピュータビジョンのための人工知能の突破口である。
GPT-4Vは,放射線学,腫瘍学,眼科,病理学など16分野にまたがって評価を行った。
以上の結果より,GPT-4Vは異常や解剖学的認識に優れていたが,診断や局所化は困難であった。
論文 参考訳(メタデータ) (2023-11-10T18:40:44Z) - A Systematic Evaluation of GPT-4V's Multimodal Capability for Medical
Image Analysis [87.25494411021066]
医用画像解析のためのGPT-4Vのマルチモーダル機能の評価を行った。
GPT-4Vは医用画像の理解に優れ、高品質な放射線診断レポートを生成する。
医用視覚接地の性能は大幅に改善する必要があることが判明した。
論文 参考訳(メタデータ) (2023-10-31T11:39:09Z) - Can GPT-4V(ision) Serve Medical Applications? Case Studies on GPT-4V for
Multimodal Medical Diagnosis [59.35504779947686]
GPT-4VはOpenAIの最新のマルチモーダル診断モデルである。
評価対象は17の人体システムである。
GPT-4Vは、医用画像のモダリティと解剖学を区別する能力を示す。
疾患の診断と包括的報告作成において重大な課題に直面している。
論文 参考訳(メタデータ) (2023-10-15T18:32:27Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
新型コロナウイルス感染症(COVID-19)のパンデミックは世界中に広がっている。
X線やCT(Computerd Tomography)などの医用画像は、世界的な新型コロナウイルス対策に欠かせない役割を担っている。
最近登場した人工知能(AI)技術は、画像ツールの力を強化し、医療専門家を支援する。
論文 参考訳(メタデータ) (2020-04-06T15:21:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。