論文の概要: Enhancing Digital Hologram Reconstruction Using Reverse-Attention Loss for Untrained Physics-Driven Deep Learning Models with Uncertain Distance
- arxiv url: http://arxiv.org/abs/2403.12056v1
- Date: Thu, 11 Jan 2024 01:30:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 07:46:43.510910
- Title: Enhancing Digital Hologram Reconstruction Using Reverse-Attention Loss for Untrained Physics-Driven Deep Learning Models with Uncertain Distance
- Title(参考訳): 不確かさのある物理駆動深層学習モデルに対する逆アテンション損失を用いたディジタルホログラム再構成の強化
- Authors: Xiwen Chen, Hao Wang, Zhao Zhang, Zhenmin Li, Huayu Li, Tong Ye, Abolfazl Razi,
- Abstract要約: 未学習のディープラーニング手法におけるオートフォーカス問題に対処するための先駆的なアプローチを提案する。
提案手法は,競合する手法に対する大幅な再構成性能を示す。
例えば、PSNRでは1dB以下であり、SSIMでは0.002以下である。
- 参考スコア(独自算出の注目度): 10.788482076164314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Untrained Physics-based Deep Learning (DL) methods for digital holography have gained significant attention due to their benefits, such as not requiring an annotated training dataset, and providing interpretability since utilizing the governing laws of hologram formation. However, they are sensitive to the hard-to-obtain precise object distance from the imaging plane, posing the $\textit{Autofocusing}$ challenge. Conventional solutions involve reconstructing image stacks for different potential distances and applying focus metrics to select the best results, which apparently is computationally inefficient. In contrast, recently developed DL-based methods treat it as a supervised task, which again needs annotated data and lacks generalizability. To address this issue, we propose $\textit{reverse-attention loss}$, a weighted sum of losses for all possible candidates with learnable weights. This is a pioneering approach to addressing the Autofocusing challenge in untrained deep-learning methods. Both theoretical analysis and experiments demonstrate its superiority in efficiency and accuracy. Interestingly, our method presents a significant reconstruction performance over rival methods (i.e. alternating descent-like optimization, non-weighted loss integration, and random distance assignment) and even is almost equal to that achieved with a precisely known object distance. For example, the difference is less than 1dB in PSNR and 0.002 in SSIM for the target sample in our experiment.
- Abstract(参考訳): デジタルホログラフィーのためのトレーニングされていない物理ベースのDeep Learning (DL)法は、注釈付きトレーニングデータセットを必要としないことやホログラム生成の法則を利用して解釈しやすくすることなど、その利点から大きな注目を集めている。
しかし、画像面からの正確な物体距離に敏感であり、$\textit{Autofocusing}$ challenge のふりをしている。
従来のソリューションでは、異なる潜在的な距離のイメージスタックを再構成し、最高の結果を選択するためにフォーカスメトリクスを適用する。
対照的に、最近開発されたDLベースの手法は、再び注釈付きデータを必要とし、一般化性に欠ける教師付きタスクとして扱う。
この問題を解決するために、学習可能な重みを持つ全ての候補に対して、重み付けされた損失の合計である$\textit{reverse-attention loss}$を提案する。
これは、訓練されていないディープラーニングメソッドにおけるAutofocusingの課題に対処するための先駆的なアプローチである。
理論解析と実験の両方が、効率と精度においてその優位性を証明している。
興味深いことに、本手法は、競合する手法(例えば、降下様最適化、非重み付き損失積分、ランダム距離割当)に対する大幅な再構成性能を示し、精度の高い対象距離で達成されたものとほぼ等しくなる。
例えば、PSNRでは1dB未満、SSIMでは0.002B以下である。
関連論文リスト
- Robust compressive tracking via online weighted multiple instance learning [0.6813925418351435]
本稿では,スパース表現と重み付きマルチインスタンス学習(WMIL)アルゴリズムに基づく粗い検索戦略を統合することで,ビジュアルオブジェクト追跡アルゴリズムを提案する。
提案手法は,他のトラッカーと比較して,粗大な探索法によりより複雑度が低く,重要なサンプルの重み付けも可能である。
論文 参考訳(メタデータ) (2024-06-14T10:48:17Z) - Depth Estimation using Weighted-loss and Transfer Learning [2.428301619698667]
転送学習と最適化された損失関数を用いた深度推定精度の向上のための簡易かつ適応的なアプローチを提案する。
本研究では,移動学習と最適損失関数を用いた深度推定精度向上のための簡易かつ適応的な手法を提案する。
EfficientNetが最も成功したアーキテクチャである。
論文 参考訳(メタデータ) (2024-04-11T12:25:54Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
本稿では,フラットな軌道を求める最適化アルゴリズムを提案する。
合成データに基づいてトレーニングされた重みは、平坦な軌道への正規化を伴う累積誤差摂動に対して頑健であることを示す。
本手法はFTD (Flat Trajectory Distillation) と呼ばれ, 勾配整合法の性能を最大4.7%向上させる。
論文 参考訳(メタデータ) (2022-11-20T15:49:11Z) - Let's Enhance: A Deep Learning Approach to Extreme Deblurring of Text
Images [3.441021278275805]
本研究は,画像劣化の逆問題に対する,ディープラーニングに基づく新しいパイプラインを提案する。
我々の結果は、最新の最先端のデブロアリングアルゴリズムの限界を探求することを目的とした、最近のヘルシンキのデブロアリングチャレンジ2021への私たちの勝利を基盤にしています。
論文 参考訳(メタデータ) (2022-11-18T09:06:56Z) - Efficient Deep Visual and Inertial Odometry with Adaptive Visual
Modality Selection [12.754974372231647]
本稿では,適応型深層学習に基づくVIO手法を提案する。
Gumbel-Softmax のトリックを用いてポリシーネットワークをトレーニングし、エンドツーエンドのシステムトレーニングで決定プロセスを差別化できるようにする。
実験結果から,本手法は全モードベースラインと同じような,あるいはさらに優れた性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-05-12T16:17:49Z) - Scale-Equivalent Distillation for Semi-Supervised Object Detection [57.59525453301374]
近年のSemi-Supervised Object Detection (SS-OD) 法は主に自己学習に基づいており、教師モデルにより、ラベルなしデータを監視信号としてハードな擬似ラベルを生成する。
実験結果から,これらの手法が直面する課題を分析した。
本稿では,大規模オブジェクトサイズの分散とクラス不均衡に頑健な簡易かつ効果的なエンド・ツー・エンド知識蒸留フレームワークであるSED(Scale-Equivalent Distillation)を提案する。
論文 参考訳(メタデータ) (2022-03-23T07:33:37Z) - Geometry Uncertainty Projection Network for Monocular 3D Object
Detection [138.24798140338095]
本稿では,予測および学習段階の誤り増幅問題に対処するために,幾何不確実性予測ネットワーク(GUP Net)を提案する。
具体的には, GUPモジュールを提案し, 推定深さの幾何誘導不確かさを求める。
トレーニング段階では,エラー増幅による不安定性を低減するための階層型タスク学習戦略を提案する。
論文 参考訳(メタデータ) (2021-07-29T06:59:07Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
本稿では,少数のトレーニング画像にのみ手動アノテーションを応用して,効果的なサルエント物体検出モデルを学習することを提案する。
我々は,このタスクを,少額の有能な物体検出とみなし,少数のコストの学習シナリオを促進するために,APL(Adversarialpaced Learning)ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-05T14:15:49Z) - Fast Uncertainty Quantification for Deep Object Pose Estimation [91.09217713805337]
深層学習に基づくオブジェクトポーズ推定は、しばしば信頼できない、自信過剰である。
本研究では,6-DoFオブジェクトのポーズ推定のための,シンプルで効率的かつプラグアンドプレイなUQ手法を提案する。
論文 参考訳(メタデータ) (2020-11-16T06:51:55Z) - Learning a Geometric Representation for Data-Efficient Depth Estimation
via Gradient Field and Contrastive Loss [29.798579906253696]
本研究では、コンブネットがラベルのない画像で幾何学的情報を抽出するのを支援するために、運動量差の少ない勾配に基づく自己教師付き学習アルゴリズムを提案する。
提案手法は,従来の自己教師付き学習アルゴリズムよりも優れ,ラベル付きデータの効率を3倍に向上させる。
論文 参考訳(メタデータ) (2020-11-06T06:47:19Z) - Auto-Rectify Network for Unsupervised Indoor Depth Estimation [119.82412041164372]
ハンドヘルド環境に現れる複雑な自我運動が,学習深度にとって重要な障害であることが確認された。
本稿では,相対回転を除去してトレーニング画像の修正を効果的に行うデータ前処理手法を提案する。
その結果、従来の教師なしSOTA法よりも、難易度の高いNYUv2データセットよりも優れていた。
論文 参考訳(メタデータ) (2020-06-04T08:59:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。