論文の概要: TMU at TREC Clinical Trials Track 2023
- arxiv url: http://arxiv.org/abs/2403.12088v1
- Date: Tue, 12 Mar 2024 00:45:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 07:36:54.665462
- Title: TMU at TREC Clinical Trials Track 2023
- Title(参考訳): TMU TREC 臨床試験トラック 2023
- Authors: Aritra Kumar Lahiri, Emrul Hasan, Qinmin Vivian Hu, Cherie Ding,
- Abstract要約: 本稿では,トロント大学が2023年に開催したTRECクリニカル・トライアル・トラックへの参加について述べる。
本実験では,先進的な自然言語処理技術とニューラルネットワークモデルを用いて,最も関連性の高い臨床試験を検索する。
- 参考スコア(独自算出の注目度): 1.9599274203282302
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper describes Toronto Metropolitan University's participation in the TREC Clinical Trials Track for 2023. As part of the tasks, we utilize advanced natural language processing techniques and neural language models in our experiments to retrieve the most relevant clinical trials. We illustrate the overall methodology, experimental settings, and results of our implementation for the run submission as part of Team - V-TorontoMU.
- Abstract(参考訳): 本稿では,トロント大学が2023年に開催したTRECクリニカル・トライアル・トラックへの参加について述べる。
これらの課題の一環として,我々は,先進的な自然言語処理技術とニューラルネットワークモデルを用いて,最も関連性の高い臨床試験を検索した。
我々は、チーム-V-TorontoMUの一部として、実行プロセスの実装の方法論、実験的な設定、結果を説明します。
関連論文リスト
- Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
大規模言語モデル(LLM)は、医療のさまざまな側面に革命をもたらすことのできる、変革的なAIツールのクラスである。
本チュートリアルは、LSMを臨床実践に効果的に統合するために必要なツールを医療専門家に提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-24T15:41:56Z) - Towards Evaluating and Building Versatile Large Language Models for Medicine [57.49547766838095]
MedS-Benchは大規模言語モデル(LLM)の性能を臨床的に評価するためのベンチマークである。
MedS-Benchは、臨床報告の要約、治療勧告、診断、名前付きエンティティ認識、医療概念説明を含む、11のハイレベルな臨床タスクにまたがる。
MedS-Insは58の医療指向言語コーパスで構成され、112のタスクで1350万のサンプルを収集している。
論文 参考訳(メタデータ) (2024-08-22T17:01:34Z) - A Course Shared Task on Evaluating LLM Output for Clinical Questions [49.78601596538669]
本稿では,健康関連臨床問題に対する有害な回答を生成するために,LLM(Large Language Models)の出力を評価することに焦点を当てた。
課題設計について考察し,学生からのフィードバックを報告する。
論文 参考訳(メタデータ) (2024-07-31T19:24:40Z) - Towards Efficient Patient Recruitment for Clinical Trials: Application of a Prompt-Based Learning Model [0.7373617024876725]
臨床試験は医薬品の介入を促進するのに不可欠であるが、適格な参加者を選ぶ際にボトルネックに直面している。
構造化されていない医療用テキストの複雑な性質は、参加者を効率的に識別する上での課題である。
本研究では,コホート選択課題に対するプロンプトベース大規模言語モデルの性能評価を目的とした。
論文 参考訳(メタデータ) (2024-04-24T20:42:28Z) - SemEval-2024 Task 2: Safe Biomedical Natural Language Inference for Clinical Trials [13.59675117792588]
SemEval-2024 Task 2: Safe Biomedical Natural Language Inference for ClinicalTrialsについて紹介する。
我々の貢献には、改良されたNLI4CT-Pデータセット(Natural Language Inference for Clinical Trials - Perturbed)が含まれる。
このタスクに登録された参加者は合計106人であり、1200以上の個人申請と25のシステム概要書に貢献している。
このイニシアチブは、医療におけるNLIモデルの堅牢性と適用性を向上し、臨床意思決定におけるより安全で信頼性の高いAIアシストを保証することを目的としている。
論文 参考訳(メタデータ) (2024-04-07T13:58:41Z) - Automatic Summarization of Doctor-Patient Encounter Dialogues Using Large Language Model through Prompt Tuning [20.9626587328674]
本研究では,ジェネレーティブ・大規模言語モデル(LLM)を用いた医師と患者との対話を要約するアプローチを提案する。
我々は, 臨床テキストを要約するために, 生成LDMを指示するプロンプトチューニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-03-19T18:37:05Z) - Neural Machine Translation of Clinical Text: An Empirical Investigation
into Multilingual Pre-Trained Language Models and Transfer-Learning [6.822926897514793]
1)臨床症例(CC),2)臨床用語(CT),3)オントロジ概念(OC)の3つのサブタスクの実験結果
ClinSpEn-2022では,英語とスペイン語の臨床領域データの共有タスクにおいて,トップレベルのパフォーマンスを達成した。
WMT21fbモデルを用いて,新しい言語空間をスペイン語で表現する手法について検討した。
論文 参考訳(メタデータ) (2023-12-12T13:26:42Z) - CliniDigest: A Case Study in Large Language Model Based Large-Scale
Summarization of Clinical Trial Descriptions [58.720142291102135]
2022年には、毎日100件以上の臨床試験がCricerTrials.govに提出された。
CliniDigestは、私たちの知る限り、臨床試験のリアルタイム、真実、そして包括的な要約を提供するための最初のツールです。
それぞれのフィールドに対して、CliniDigestは$mu=153, igma=69$の要約を生成し、それぞれが$mu=54%, sigma=30%のソースを使用する。
論文 参考訳(メタデータ) (2023-07-26T21:49:14Z) - ITTC @ TREC 2021 Clinical Trials Track [54.141379782822206]
本課題は、患者の入院ノートの要約を構成するトピックに有効な臨床試験を適合させる問題に焦点を当てる。
NLP手法を用いて試行とトピックの表現方法を探索し、共通の検索モデルを用いて各トピックに関連するトライアルのランク付けリストを生成する。
提案されたすべての実行の結果は、すべてのトピックの中央値よりもはるかに上回っていますが、改善の余地はたくさんあります。
論文 参考訳(メタデータ) (2022-02-16T04:56:47Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
医療コミュニティにおけるこの問題の重要性を示す。
本稿では,変換器 (BERT) モデルによる2方向表現の分類順序の変更について述べる。
約400万人のユニークな患者訪問からなる、大規模なロシアのEHRデータセットを使用します。
論文 参考訳(メタデータ) (2020-07-15T09:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。