論文の概要: Automatic Summarization of Doctor-Patient Encounter Dialogues Using Large Language Model through Prompt Tuning
- arxiv url: http://arxiv.org/abs/2403.13089v1
- Date: Tue, 19 Mar 2024 18:37:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 18:56:56.751919
- Title: Automatic Summarization of Doctor-Patient Encounter Dialogues Using Large Language Model through Prompt Tuning
- Title(参考訳): プロンプトチューニングによる大規模言語モデルを用いた医師と医師の対話の自動要約
- Authors: Mengxian Lyu, Cheng Peng, Xiaohan Li, Patrick Balian, Jiang Bian, Yonghui Wu,
- Abstract要約: 本研究では,ジェネレーティブ・大規模言語モデル(LLM)を用いた医師と患者との対話を要約するアプローチを提案する。
我々は, 臨床テキストを要約するために, 生成LDMを指示するプロンプトチューニングアルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 20.9626587328674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic text summarization (ATS) is an emerging technology to assist clinicians in providing continuous and coordinated care. This study presents an approach to summarize doctor-patient dialogues using generative large language models (LLMs). We developed prompt-tuning algorithms to instruct generative LLMs to summarize clinical text. We examined the prompt-tuning strategies, the size of soft prompts, and the few-short learning ability of GatorTronGPT, a generative clinical LLM developed using 277 billion clinical and general English words with up to 20 billion parameters. We compared GatorTronGPT with a previous solution based on fine-tuning of a widely used T5 model, using a clinical benchmark dataset MTS-DIALOG. The experimental results show that the GatorTronGPT- 20B model achieved the best performance on all evaluation metrics. The proposed solution has a low computing cost as the LLM parameters are not updated during prompt-tuning. This study demonstrates the efficiency of generative clinical LLMs for clinical ATS through prompt tuning.
- Abstract(参考訳): 自動テキスト要約(ATS: Automatic Text summarization)は、医師が継続的かつ協調的なケアを提供することを支援する技術である。
本研究では,ジェネレーティブ・大規模言語モデル(LLM)を用いて医師と患者との対話を要約する手法を提案する。
我々は, 臨床テキストを要約するために, 生成LDMを指示するプロンプトチューニングアルゴリズムを開発した。
GatorTronGPT(GatorTronGPT)は,277億のクリニカルおよび一般的な英単語を最大200億のパラメータで用いて開発され,迅速な学習方法,ソフトプロンプトのサイズ,数短学習能力について検討した。
我々は,臨床ベンチマークデータセットMTS-DIALOGを用いて,広範に使用されているT5モデルの微調整に基づいて,GatorTronGPTと過去のソリューションを比較した。
実験結果から, GatorTronGPT-20Bモデルがすべての評価指標で最高の性能を示した。
提案手法は、PLMパラメータがプロンプトチューニング中に更新されないため、計算コストが低い。
本研究は, プロンプトチューニングによる臨床用ALMの有効性を示すものである。
関連論文リスト
- Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
大規模言語モデル(LLM)は、医療のさまざまな側面に革命をもたらすことのできる、変革的なAIツールのクラスである。
本チュートリアルは、LSMを臨床実践に効果的に統合するために必要なツールを医療専門家に提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-24T15:41:56Z) - Towards Evaluating and Building Versatile Large Language Models for Medicine [57.49547766838095]
MedS-Benchは大規模言語モデル(LLM)の性能を臨床的に評価するためのベンチマークである。
MedS-Benchは、臨床報告の要約、治療勧告、診断、名前付きエンティティ認識、医療概念説明を含む、11のハイレベルな臨床タスクにまたがる。
MedS-Insは58の医療指向言語コーパスで構成され、112のタスクで1350万のサンプルを収集している。
論文 参考訳(メタデータ) (2024-08-22T17:01:34Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
VLM(Vision-Language Models)は、医用画像を分析し、自然言語の相互作用に関与することによって、臨床医を支援する。
VLMはしばしば「幻覚的」な振る舞いを示し、文脈的マルチモーダル情報に基づかないテキスト出力を生成する。
本稿では,臨床推論の象徴的表現を用いて医療知識にVLMを基盤とする新たなアライメントアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-29T23:19:28Z) - WisPerMed at "Discharge Me!": Advancing Text Generation in Healthcare with Large Language Models, Dynamic Expert Selection, and Priming Techniques on MIMIC-IV [0.38084074204911494]
本研究は, アウトレット・サマリーの「Brief Hospital Course」と「Discharge Instructions」を自動生成するために, 最先端の言語モデルを活用することを目的としている。
医療施設において, 自動化がドキュメンテーションの精度を向上し, クリニックのバーンアウトを緩和し, 運用効率を向上させる方法について検討した。
論文 参考訳(メタデータ) (2024-05-18T10:56:45Z) - Large Language Models in the Clinic: A Comprehensive Benchmark [63.21278434331952]
診療所の大規模言語モデル(LLM)をよりよく理解するためのベンチマークであるClimateBenchを構築した。
まず、さまざまな臨床言語の生成、理解、推論タスクを含む11の既存のデータセットを収集します。
次に,現実の実践において複雑だが一般的である6つの新しいデータセットと臨床タスクを構築した。
ゼロショット設定と少数ショット設定の両方で、20個のLDMを広範囲に評価する。
論文 参考訳(メタデータ) (2024-04-25T15:51:06Z) - Adapting Open-Source Large Language Models for Cost-Effective, Expert-Level Clinical Note Generation with On-Policy Reinforcement Learning [19.08691249610632]
本研究では,オープンソースのLLaMA-213億パラメータモデルに対する包括的ドメイン・タスク特化プロセスを提案する。
教師モデルとしてGemini 1.0 Proを用いて、政治強化学習を行うための新しいアプローチであるDistillDirectを導入する。
我々のモデルであるLLaMA-Clinicは、医師が作成したものと同等の品質の臨床メモを生成することができる。
論文 参考訳(メタデータ) (2024-04-25T15:34:53Z) - Med42 -- Evaluating Fine-Tuning Strategies for Medical LLMs: Full-Parameter vs. Parameter-Efficient Approaches [7.3384872719063114]
我々は,Llama-2アーキテクチャに基づく医療用大規模言語モデル(LLM)を開発し,改良した。
本実験は,様々な医用ベンチマークを用いて,これらのチューニング戦略の有効性を体系的に評価した。
論文 参考訳(メタデータ) (2024-04-23T06:36:21Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
大規模言語モデル(LLM)の強力な意味理解と入力非依存特性を利用する。
本研究は, LLMを用いて既存の薬剤推奨手法を変換することを目的としている。
これを軽減するため,LLMの習熟度をよりコンパクトなモデルに伝達する機能レベルの知識蒸留技術を開発した。
論文 参考訳(メタデータ) (2024-02-05T08:25:22Z) - Generative Large Language Models Are All-purpose Text Analytics Engines:
Text-to-text Learning Is All Your Need [24.672621081551675]
テキスト・トゥ・テキスト・ラーニング(text-to-text learning)として7つの重要なNLPタスクを定式化し,1つの総合的臨床LCMを用いて解決した。
提案手法は,7つの主要なNLPタスクのうち5つに対して,1つの統合生成LDMを用いて最先端の性能を達成した。
論文 参考訳(メタデータ) (2023-12-11T04:00:26Z) - GatorTron: A Large Clinical Language Model to Unlock Patient Information
from Unstructured Electronic Health Records [22.652798872046283]
電子健康記録(EHR)を処理・解釈する人工知能(AI)システムの開発への関心が高まっている。
臨床言語モデルはほとんどないが、臨床領域で訓練された言語のうち最大のものは、比較的小さい1億1000万のパラメータである。
何十億ものパラメータを持つ大規模臨床言語モデルが、医療AIシステムが非構造化のEHRを利用するのにどの程度役立つかは明らかではない。
論文 参考訳(メタデータ) (2022-02-02T14:28:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。