GCAM: Gaussian and causal-attention model of food fine-grained recognition
- URL: http://arxiv.org/abs/2403.12109v1
- Date: Mon, 18 Mar 2024 03:39:54 GMT
- Title: GCAM: Gaussian and causal-attention model of food fine-grained recognition
- Authors: Guohang Zhuang, Yue Hu, Tianxing Yan, JiaZhan Gao,
- Abstract summary: We propose the adoption of a Gaussian and causal-attention model for fine-grained object recognition.
To counteract data drift resulting from uneven data distributions, we employ a counterfactual reasoning approach.
We experimentally show that GCAM surpasses state-of-the-art methods on the ETH-FOOD101, UECFOOD256, and Vireo-FOOD172 datasets.
- Score: 5.198198193921202
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Currently, most food recognition relies on deep learning for category classification. However, these approaches struggle to effectively distinguish between visually similar food samples, highlighting the pressing need to address fine-grained issues in food recognition. To mitigate these challenges, we propose the adoption of a Gaussian and causal-attention model for fine-grained object recognition.In particular, we train to obtain Gaussian features over target regions, followed by the extraction of fine-grained features from the objects, thereby enhancing the feature mapping capabilities of the target regions. To counteract data drift resulting from uneven data distributions, we employ a counterfactual reasoning approach. By using counterfactual interventions, we analyze the impact of the learned image attention mechanism on network predictions, enabling the network to acquire more useful attention weights for fine-grained image recognition. Finally, we design a learnable loss strategy to balance training stability across various modules, ultimately improving the accuracy of the final target recognition. We validate our approach on four relevant datasets, demonstrating its excellent performance across these four datasets.We experimentally show that GCAM surpasses state-of-the-art methods on the ETH-FOOD101, UECFOOD256, and Vireo-FOOD172 datasets. Furthermore, our approach also achieves state-of-the-art performance on the CUB-200 dataset.
Related papers
- Adaptive Masking Enhances Visual Grounding [12.793586888511978]
We propose IMAGE, Interpretative MAsking with Gaussian radiation modEling, to enhance vocabulary grounding in low-shot learning scenarios.
We evaluate the efficacy of our approach on benchmark datasets, including COCO and ODinW, demonstrating its superior performance in zero-shot and few-shot tasks.
arXiv Detail & Related papers (2024-10-04T05:48:02Z) - Localized Gaussians as Self-Attention Weights for Point Clouds Correspondence [92.07601770031236]
We investigate semantically meaningful patterns in the attention heads of an encoder-only Transformer architecture.
We find that fixing the attention weights not only accelerates the training process but also enhances the stability of the optimization.
arXiv Detail & Related papers (2024-09-20T07:41:47Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
arXiv Detail & Related papers (2024-03-23T22:32:06Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - INoD: Injected Noise Discriminator for Self-Supervised Representation
Learning in Agricultural Fields [6.891600948991265]
We propose an Injected Noise Discriminator (INoD) which exploits principles of feature replacement and dataset discrimination for self-supervised representation learning.
INoD interleaves feature maps from two disjoint datasets during their convolutional encoding and predicts the dataset affiliation of the resultant feature map as a pretext task.
Our approach enables the network to learn unequivocal representations of objects seen in one dataset while observing them in conjunction with similar features from the disjoint dataset.
arXiv Detail & Related papers (2023-03-31T14:46:31Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - DcnnGrasp: Towards Accurate Grasp Pattern Recognition with Adaptive
Regularizer Learning [13.08779945306727]
Current state-of-the-art methods ignore category information of objects which is crucial for grasp pattern recognition.
This paper presents a novel dual-branch convolutional neural network (DcnnGrasp) to achieve joint learning of object category classification and grasp pattern recognition.
arXiv Detail & Related papers (2022-05-11T00:34:27Z) - PANet: Perspective-Aware Network with Dynamic Receptive Fields and
Self-Distilling Supervision for Crowd Counting [63.84828478688975]
We propose a novel perspective-aware approach called PANet to address the perspective problem.
Based on the observation that the size of the objects varies greatly in one image due to the perspective effect, we propose the dynamic receptive fields (DRF) framework.
The framework is able to adjust the receptive field by the dilated convolution parameters according to the input image, which helps the model to extract more discriminative features for each local region.
arXiv Detail & Related papers (2021-10-31T04:43:05Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
We introduce a new method for land cover mapping by using a clustering based pretext task for self-supervised learning.
We demonstrate the effectiveness of the method on two societally relevant applications.
arXiv Detail & Related papers (2021-08-16T19:35:43Z) - TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain
Gait Recognition [77.77786072373942]
This paper proposes a Transferable Neighborhood Discovery (TraND) framework to bridge the domain gap for unsupervised cross-domain gait recognition.
We design an end-to-end trainable approach to automatically discover the confident neighborhoods of unlabeled samples in the latent space.
Our method achieves state-of-the-art results on two public datasets, i.e., CASIA-B and OU-LP.
arXiv Detail & Related papers (2021-02-09T03:07:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.