Graph-Jigsaw Conditioned Diffusion Model for Skeleton-based Video Anomaly Detection
- URL: http://arxiv.org/abs/2403.12172v2
- Date: Sat, 31 Aug 2024 02:36:11 GMT
- Title: Graph-Jigsaw Conditioned Diffusion Model for Skeleton-based Video Anomaly Detection
- Authors: Ali Karami, Thi Kieu Khanh Ho, Narges Armanfard,
- Abstract summary: Skeleton-based video anomaly detection (SVAD) is a crucial task in computer vision.
This paper introduces a novel, practical and lightweight framework, namely Graph-Jigsaw Conditioned Diffusion Model for Skeleton-based Video Anomaly Detection (GiCiSAD)
experiments on four widely used skeleton-based video datasets show that GiCiSAD outperforms existing methods with significantly fewer training parameters.
- Score: 7.127829790714167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Skeleton-based video anomaly detection (SVAD) is a crucial task in computer vision. Accurately identifying abnormal patterns or events enables operators to promptly detect suspicious activities, thereby enhancing safety. Achieving this demands a comprehensive understanding of human motions, both at body and region levels, while also accounting for the wide variations of performing a single action. However, existing studies fail to simultaneously address these crucial properties. This paper introduces a novel, practical and lightweight framework, namely Graph-Jigsaw Conditioned Diffusion Model for Skeleton-based Video Anomaly Detection (GiCiSAD) to overcome the challenges associated with SVAD. GiCiSAD consists of three novel modules: the Graph Attention-based Forecasting module to capture the spatio-temporal dependencies inherent in the data, the Graph-level Jigsaw Puzzle Maker module to distinguish subtle region-level discrepancies between normal and abnormal motions, and the Graph-based Conditional Diffusion model to generate a wide spectrum of human motions. Extensive experiments on four widely used skeleton-based video datasets show that GiCiSAD outperforms existing methods with significantly fewer training parameters, establishing it as the new state-of-the-art.
Related papers
- MissionGNN: Hierarchical Multimodal GNN-based Weakly Supervised Video Anomaly Recognition with Mission-Specific Knowledge Graph Generation [5.0923114224599555]
This paper introduces a novel hierarchical graph neural network (GNN) based model MissionGNN.
Our approach circumvents the limitations of previous methods by avoiding heavy gradient computations on large multimodal models.
Our model provides a practical and efficient solution for real-time video analysis without the constraints of previous segmentation-based or multimodal approaches.
arXiv Detail & Related papers (2024-06-27T01:09:07Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
We propose a lightweight module called Dual Attention Module (DAM) for capturing cross-dimension interaction relationships in-temporal skeletal data.
It employs the frame attention mechanism to identify the most significant frames and the skeleton attention mechanism to capture broader relationships across fixed partitions with minimal parameters and flops.
arXiv Detail & Related papers (2024-06-05T06:18:03Z) - Dynamic Erasing Network Based on Multi-Scale Temporal Features for
Weakly Supervised Video Anomaly Detection [103.92970668001277]
We propose a Dynamic Erasing Network (DE-Net) for weakly supervised video anomaly detection.
We first propose a multi-scale temporal modeling module, capable of extracting features from segments of varying lengths.
Then, we design a dynamic erasing strategy, which dynamically assesses the completeness of the detected anomalies.
arXiv Detail & Related papers (2023-12-04T09:40:11Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
Video anomaly detection (VAD) with weak supervision has achieved remarkable performance in utilizing video-level labels to discriminate whether a video frame is normal or abnormal.
Recent studies attempt to tackle a more realistic setting, open-set VAD, which aims to detect unseen anomalies given seen anomalies and normal videos.
This paper takes a step further and explores open-vocabulary video anomaly detection (OVVAD), in which we aim to leverage pre-trained large models to detect and categorize seen and unseen anomalies.
arXiv Detail & Related papers (2023-11-13T02:54:17Z) - A Lightweight Video Anomaly Detection Model with Weak Supervision and Adaptive Instance Selection [14.089888316857426]
This paper focuses on weakly supervised video anomaly detection.
We develop a lightweight video anomaly detection model.
We show that our model can achieve comparable or even superior AUC score compared to the state-of-the-art methods.
arXiv Detail & Related papers (2023-10-09T01:23:08Z) - Exploring Diffusion Models for Unsupervised Video Anomaly Detection [17.816344808780965]
This paper investigates the performance of diffusion models for video anomaly detection (VAD)
Experiments performed on two large-scale anomaly detection datasets demonstrate the consistent improvement of the proposed method over the state-of-the-art generative models.
This is the first study using a diffusion model to present guidance for examining VAD in surveillance scenarios.
arXiv Detail & Related papers (2023-04-12T13:16:07Z) - DAGAD: Data Augmentation for Graph Anomaly Detection [57.92471847260541]
This paper devises a novel Data Augmentation-based Graph Anomaly Detection (DAGAD) framework for attributed graphs.
A series of experiments on three datasets prove that DAGAD outperforms ten state-of-the-art baseline detectors concerning various mostly-used metrics.
arXiv Detail & Related papers (2022-10-18T11:28:21Z) - Learning Multi-Granular Spatio-Temporal Graph Network for Skeleton-based
Action Recognition [49.163326827954656]
We propose a novel multi-granular-temporal graph network for skeleton-based action classification.
We develop a dual-head graph network consisting of two inter-leaved branches, which enables us to extract at least two-temporal resolutions.
We conduct extensive experiments on three large-scale datasets.
arXiv Detail & Related papers (2021-08-10T09:25:07Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.