Useful Compact Representations for Data-Fitting
- URL: http://arxiv.org/abs/2403.12206v2
- Date: Sat, 18 Jan 2025 06:39:40 GMT
- Title: Useful Compact Representations for Data-Fitting
- Authors: Johannes J. Brust,
- Abstract summary: We develop new compact representations that are parameterized by a choice of vectors and that reduce to existing well known formulas for special choices.
We demonstrate effectiveness of the compact representations for large eigenvalue computations, tensor factorizations and nonlinear regressions.
- Score: 0.0
- License:
- Abstract: For minimization problems without 2nd derivative information, methods that estimate Hessian matrices can be very effective. However, conventional techniques generate dense matrices that are prohibitive for large problems. Limited-memory compact representations express the dense arrays in terms of a low rank representation and have become the state-of-the-art for software implementations on large deterministic problems. We develop new compact representations that are parameterized by a choice of vectors and that reduce to existing well known formulas for special choices. We demonstrate effectiveness of the compact representations for large eigenvalue computations, tensor factorizations and nonlinear regressions.
Related papers
- Structured Regularization for Constrained Optimization on the SPD Manifold [1.1126342180866644]
We introduce a class of structured regularizers, based on symmetric gauge functions, which allow for solving constrained optimization on the SPD manifold with faster unconstrained methods.
We show that our structured regularizers can be chosen to preserve or induce desirable structure, in particular convexity and "difference of convex" structure.
arXiv Detail & Related papers (2024-10-12T22:11:22Z) - Projected Tensor-Tensor Products for Efficient Computation of Optimal Multiway Data Representations [0.0]
We propose a new projected tensor-tensor product that relaxes the invertibility restriction to reduce computational overhead.
We provide theory to prove the matrix mimeticity and the optimality of compressed representations within the projected product framework.
arXiv Detail & Related papers (2024-09-28T16:29:54Z) - Feature selection in linear SVMs via a hard cardinality constraint: a scalable SDP decomposition approach [3.7876216422538485]
We study the embedded feature selection problem in linear Support Vector Machines (SVMs) in which a cardinality constraint is employed.
The problem is NP-hard due to the presence of the cardinality constraint, even though the original linear SVM amounts to a solvable problem in time.
To handle the hard problem, we first introduce two mixed-integer formulations for which novel semidefinite relaxations are proposed.
arXiv Detail & Related papers (2024-04-15T19:15:32Z) - Sufficient dimension reduction for feature matrices [3.04585143845864]
We propose a method called principal support matrix machine (PSMM) for the matrix sufficient dimension reduction.
Our numerical analysis demonstrates that the PSMM outperforms existing methods and has strong interpretability in real data applications.
arXiv Detail & Related papers (2023-03-07T23:16:46Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - A Novel Maximum-Entropy-Driven Technique for Low-Rank Orthogonal
Nonnegative Matrix Factorization with $\ell_0$-Norm sparsity Constraint [0.0]
In data-driven control and machine learning, a common requirement involves breaking down large matrices into smaller, low-rank factors.
This paper introduces an innovative solution to the orthogonal nonnegative matrix factorization (ONMF) problem.
The proposed method achieves comparable or improved reconstruction errors in line with the literature.
arXiv Detail & Related papers (2022-10-06T04:30:59Z) - Non-PSD Matrix Sketching with Applications to Regression and
Optimization [56.730993511802865]
We present dimensionality reduction methods for non-PSD and square-roots" matrices.
We show how these techniques can be used for multiple downstream tasks.
arXiv Detail & Related papers (2021-06-16T04:07:48Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
We solve a weakly supervised regression problem.
Under "weakly" we understand that for some training points the labels are known, for some unknown, and for others uncertain due to the presence of random noise or other reasons such as lack of resources.
In the numerical section, we applied the suggested method to artificial and real datasets using Monte-Carlo modeling.
arXiv Detail & Related papers (2021-04-13T23:21:01Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
We propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_2,p$-norm regularization.
We present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically.
arXiv Detail & Related papers (2020-12-29T04:08:38Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching.
We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT)
arXiv Detail & Related papers (2020-06-10T15:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.