Feature selection in linear SVMs via hard cardinality constraint: a scalable SDP decomposition approach
- URL: http://arxiv.org/abs/2404.10099v1
- Date: Mon, 15 Apr 2024 19:15:32 GMT
- Title: Feature selection in linear SVMs via hard cardinality constraint: a scalable SDP decomposition approach
- Authors: Immanuel Bomze, Federico D'Onofrio, Laura Palagi, Bo Peng,
- Abstract summary: We study the embedded feature selection problem in linear Support Vector Machines (SVMs)
A cardinality constraint is employed, leading to a fully explainable selection model.
The problem is NP-hard due to the presence of the cardinality constraint.
- Score: 3.7876216422538485
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we study the embedded feature selection problem in linear Support Vector Machines (SVMs), in which a cardinality constraint is employed, leading to a fully explainable selection model. The problem is NP-hard due to the presence of the cardinality constraint, even though the original linear SVM amounts to a problem solvable in polynomial time. To handle the hard problem, we first introduce two mixed-integer formulations for which novel SDP relaxations are proposed. Exploiting the sparsity pattern of the relaxations, we decompose the problems and obtain equivalent relaxations in a much smaller cone, making the conic approaches scalable. To make the best usage of the decomposed relaxations, we propose heuristics using the information of its optimal solution. Moreover, an exact procedure is proposed by solving a sequence of mixed-integer decomposed SDPs. Numerical results on classical benchmarking datasets are reported, showing the efficiency and effectiveness of our approach.
Related papers
- Towards Convexity in Anomaly Detection: A New Formulation of SSLM with Unique Optimal Solutions [12.250410918282615]
An unsolved issue in widely used methods as Support Vector Description (SVDD) Small and Large Sphere SVM (MvMs)
We introduce a novel SSLM demonstrated to be impossible with traditional non approaches.
arXiv Detail & Related papers (2024-10-31T09:42:39Z) - Value-Biased Maximum Likelihood Estimation for Model-based Reinforcement
Learning in Discounted Linear MDPs [16.006893624836554]
We propose to solve linear MDPs through the lens of Value-Biased Maximum Likelihood Estimation (VBMLE)
VBMLE is computationally more efficient as it only requires solving one optimization problem in each time step.
In our regret analysis, we offer a generic convergence result of MLE in linear MDPs through a novel supermartingale construct.
arXiv Detail & Related papers (2023-10-17T18:27:27Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - Efficient semidefinite bounds for multi-label discrete graphical models [6.226454551201676]
One of the main queries on such models is to identify the SDPWCSP Function on Cost of a Posteri (MAP) Networks.
We consider a traditional dualized constraint approach and a dedicated dedicated SDP/Monteiro style method based on row-by-row updates.
arXiv Detail & Related papers (2021-11-24T13:38:34Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
We address the non- optimisation problem of finding a matrix on the Stiefel manifold that maximises a quadratic objective function.
We propose a simple yet effective sparsity-promoting algorithm for finding the dominant eigenspace matrix.
arXiv Detail & Related papers (2021-09-30T19:17:35Z) - Bayesian preference elicitation for multiobjective combinatorial
optimization [12.96855751244076]
We introduce a new incremental preference elicitation procedure able to deal with noisy responses of a Decision Maker (DM)
We assume that the preferences of the DM are represented by an aggregation function whose parameters are unknown and that the uncertainty about them is represented by a density function on the parameter space.
arXiv Detail & Related papers (2020-07-29T12:28:37Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching.
We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT)
arXiv Detail & Related papers (2020-06-10T15:00:09Z) - Consistent Second-Order Conic Integer Programming for Learning Bayesian
Networks [2.7473982588529653]
We study the problem of learning the sparse DAG structure of a BN from continuous observational data.
The optimal solution to this mathematical program is known to have desirable statistical properties under certain conditions.
We propose a concrete early stopping criterion to terminate the branch-and-bound process in order to obtain a near-optimal solution.
arXiv Detail & Related papers (2020-05-29T00:13:15Z) - MINA: Convex Mixed-Integer Programming for Non-Rigid Shape Alignment [77.38594866794429]
convex mixed-integer programming formulation for non-rigid shape matching.
We propose a novel shape deformation model based on an efficient low-dimensional discrete model.
arXiv Detail & Related papers (2020-02-28T09:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.