論文の概要: A Unified Model for Longitudinal Multi-Modal Multi-View Prediction with Missingness
- arxiv url: http://arxiv.org/abs/2403.12211v1
- Date: Mon, 18 Mar 2024 19:51:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 18:12:11.326334
- Title: A Unified Model for Longitudinal Multi-Modal Multi-View Prediction with Missingness
- Title(参考訳): 欠損を伴う縦型マルチモーダル・マルチビュー予測のための統一モデル
- Authors: Boqi Chen, Junier Oliva, Marc Niethammer,
- Abstract要約: 本稿では,長手マルチモーダル・マルチビュー(MMMV)予測のための統一モデルを提案する。
提案手法は,入力に希望する時間ポイントを最大で確保し,利用可能なデータをすべて活用することを目的としている。
- 参考スコア(独自算出の注目度): 25.95298616599799
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical records often consist of different modalities, such as images, text, and tabular information. Integrating all modalities offers a holistic view of a patient's condition, while analyzing them longitudinally provides a better understanding of disease progression. However, real-world longitudinal medical records present challenges: 1) patients may lack some or all of the data for a specific timepoint, and 2) certain modalities or views might be absent for all patients during a particular period. In this work, we introduce a unified model for longitudinal multi-modal multi-view (MMMV) prediction with missingness. Our method allows as many timepoints as desired for input, and aims to leverage all available data, regardless of their availability. We conduct extensive experiments on the knee osteoarthritis dataset from the Osteoarthritis Initiative (OAI) for pain and Kellgren-Lawrence grade (KLG) prediction at a future timepoint. We demonstrate the effectiveness of our method by comparing results from our unified model to specific models that use the same modality and view combinations during training and evaluation. We also show the benefit of having extended temporal data and provide post-hoc analysis for a deeper understanding of each modality/view's importance for different tasks.
- Abstract(参考訳): 医療記録は、画像、テキスト、表情報など、様々なモダリティから構成されることが多い。
すべてのモダリティを統合することは、患者の状態の全体像を提供すると同時に、それらを縦に分析することで、疾患の進行をよりよく理解する。
しかし、現実世界の経時的医療記録には課題がある。
1)患者は特定の時点のデータの一部または全部を欠くことがあり、
2) ある期間にすべての患者に特定のモダリティや見解が欠如している可能性がある。
本研究では,長手型マルチモーダル・マルチビュー(MMMV)予測のための統一モデルを提案する。
提案手法は,入力に希望する時間ポイントを最大で確保し,利用可能なデータをすべて活用することを目的としている。
変形性膝関節症に対するOAI(Ocearthritis Initiative)とKellgren-Lawrence grade(KLG)による膝関節症データセットの実験的評価を行った。
我々は,本手法の有効性を,トレーニングと評価において同一のモダリティとビューの組み合わせを使用する特定のモデルと比較することによって示す。
また、時間的データの拡張による利点を示し、異なるタスクにおける各モダリティ/ビューの重要性をより深く理解するためのポストホック分析を提供する。
関連論文リスト
- DRIM: Learning Disentangled Representations from Incomplete Multimodal Healthcare Data [0.0]
実生活の医療データは、しばしばマルチモーダルで不完全であり、高度なディープラーニングモデルの必要性を助長する。
データ疎性にもかかわらず、共有表現とユニークな表現をキャプチャする新しい方法であるDRIMを紹介する。
本手法はグリオーマ患者の生存予測タスクにおける最先端のアルゴリズムよりも優れており,モダリティの欠如に対して頑健である。
論文 参考訳(メタデータ) (2024-09-25T16:13:57Z) - DrFuse: Learning Disentangled Representation for Clinical Multi-Modal
Fusion with Missing Modality and Modal Inconsistency [18.291267748113142]
そこで本研究では,DrFuseを効果的に多モード核融合を実現するために提案する。
モダリティに共通する特徴と各モダリティに特有の特徴を分離することで、モダリティの欠如に対処する。
実世界の大規模データセットMIMIC-IVとMIMIC-CXRを用いて提案手法を検証する。
論文 参考訳(メタデータ) (2024-03-10T12:41:34Z) - A Two-stream Convolutional Network for Musculoskeletal and Neurological
Disorders Prediction [14.003588854239544]
筋骨格障害や神経疾患は高齢者の歩行障害の最も一般的な原因である。
近年のディープラーニングに基づく手法は、自動分析に有望な結果を示している。
論文 参考訳(メタデータ) (2022-08-18T14:32:16Z) - Bridging the Gap Between Patient-specific and Patient-independent
Seizure Prediction via Knowledge Distillation [7.2666838978096875]
既存のアプローチは通常、てんかんの信号の高度にパーソナライズされた特性のために、患者固有の方法でモデルを訓練する。
患者固有のモデルは、蒸留された知識と追加のパーソナライズされたデータによって得られる。
提案手法を用いて,CHB-MIT sEEGデータベース上で5つの最先端の発作予測法を訓練する。
論文 参考訳(メタデータ) (2022-02-25T10:30:29Z) - Multi-task longitudinal forecasting with missing values on Alzheimer's
Disease [4.5855304767722185]
本稿では、最近発表されたSSHIBAモデルを用いて、長手データ上で異なるタスクを欠落した値で共同学習するフレームワークを提案する。
この方法はベイズ変分推論を用いて、欠落した値をインプットし、複数のビューの情報を組み合わせる。
認知症における診断, 心室容積, 臨床スコアの同時予測に本モデルを適用した。
論文 参考訳(メタデータ) (2022-01-13T16:02:35Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
本稿では、医療表現学習と予測分析のための、エンドツーエンドの堅牢なトランスフォーマーベースのソリューション、患者旅行の相互統合、医療オントロジー(MIMO)を提案する。
論文 参考訳(メタデータ) (2021-07-20T07:04:52Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Cross-Modal Information Maximization for Medical Imaging: CMIM [62.28852442561818]
病院では、同じ情報を異なるモダリティの下で利用できるようにする特定の情報システムにデータがサイロ化される。
これは、テスト時に常に利用できないかもしれない同じ情報の複数のビューを列車で取得し、使用するためのユニークな機会を提供する。
テスト時にモダリティの低下に耐性を持つマルチモーダル入力の優れた表現を学習することで、利用可能なデータを最大限活用する革新的なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-20T20:05:35Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
混合データ型と欠落値を特徴とする大規模臨床データセット分析のための半教師付き方法論を提案する。
この手法は、次元の減少、データの可視化、クラスタリング、特徴の選択と、部分的に順序付けられた観測列における測地距離(擬時)の定量化のタスクを同時に扱うことのできる弾性主グラフの適用に基づいている。
論文 参考訳(メタデータ) (2020-07-07T21:04:55Z) - Temporal Phenotyping using Deep Predictive Clustering of Disease
Progression [97.88605060346455]
我々は、時系列データをクラスタリングするためのディープラーニングアプローチを開発し、各クラスタは、同様の将来的な結果を共有する患者から構成される。
2つの実世界のデータセットに対する実験により、我々のモデルは最先端のベンチマークよりも優れたクラスタリング性能が得られることが示された。
論文 参考訳(メタデータ) (2020-06-15T20:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。