Temporally-Consistent Koopman Autoencoders for Forecasting Dynamical Systems
- URL: http://arxiv.org/abs/2403.12335v1
- Date: Tue, 19 Mar 2024 00:48:25 GMT
- Title: Temporally-Consistent Koopman Autoencoders for Forecasting Dynamical Systems
- Authors: Indranil Nayak, Debdipta Goswami, Mrinal Kumar, Fernando Teixeira,
- Abstract summary: We introduce the Temporally-Consistent Koopman Autoencoder (tcKAE)
tcKAE generates accurate long-term predictions even with constrained and noisy training data.
We demonstrate tcKAE's superior performance over state-of-the-art KAE models across a variety of test cases.
- Score: 42.6886113798806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Absence of sufficiently high-quality data often poses a key challenge in data-driven modeling of high-dimensional spatio-temporal dynamical systems. Koopman Autoencoders (KAEs) harness the expressivity of deep neural networks (DNNs), the dimension reduction capabilities of autoencoders, and the spectral properties of the Koopman operator to learn a reduced-order feature space with simpler, linear dynamics. However, the effectiveness of KAEs is hindered by limited and noisy training datasets, leading to poor generalizability. To address this, we introduce the Temporally-Consistent Koopman Autoencoder (tcKAE), designed to generate accurate long-term predictions even with constrained and noisy training data. This is achieved through a consistency regularization term that enforces prediction coherence across different time steps, thus enhancing the robustness and generalizability of tcKAE over existing models. We provide analytical justification for this approach based on Koopman spectral theory and empirically demonstrate tcKAE's superior performance over state-of-the-art KAE models across a variety of test cases, including simple pendulum oscillations, kinetic plasmas, fluid flows, and sea surface temperature data.
Related papers
- KODA: A Data-Driven Recursive Model for Time Series Forecasting and Data Assimilation using Koopman Operators [14.429071321401953]
We propose a Koopman operator-based approach that integrates forecasting and data assimilation in nonlinear dynamical systems.
In particular we use a Fourier domain filter to disentangle the data into a physical component whose dynamics can be accurately represented by a Koopman operator.
We show that KODA outperforms existing state of the art methods on multiple time series benchmarks.
arXiv Detail & Related papers (2024-09-29T02:25:48Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
We introduce Koopman VAE, a new generative framework that is based on a novel design for the model prior.
Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map.
KoVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks.
arXiv Detail & Related papers (2023-10-04T07:14:43Z) - Koopman Invertible Autoencoder: Leveraging Forward and Backward Dynamics
for Temporal Modeling [13.38194491846739]
We propose a novel machine learning model based on Koopman operator theory, which we call Koopman Invertible Autoencoders (KIA)
KIA captures the inherent characteristic of the system by modeling both forward and backward dynamics in the infinite-dimensional Hilbert space.
This enables us to efficiently learn low-dimensional representations, resulting in more accurate predictions of long-term system behavior.
arXiv Detail & Related papers (2023-09-19T03:42:55Z) - Predicting Physics in Mesh-reduced Space with Temporal Attention [15.054026802351146]
We propose a new method that captures long-term dependencies through a transformer-style temporal attention model.
Our method outperforms a competitive GNN baseline on several complex fluid dynamics prediction tasks.
We believe our approach paves the way to bringing the benefits of attention-based sequence models to solving high-dimensional complex physics tasks.
arXiv Detail & Related papers (2022-01-22T18:32:54Z) - KalmanNet: Neural Network Aided Kalman Filtering for Partially Known
Dynamics [84.18625250574853]
We present KalmanNet, a real-time state estimator that learns from data to carry out Kalman filtering under non-linear dynamics.
We numerically demonstrate that KalmanNet overcomes nonlinearities and model mismatch, outperforming classic filtering methods.
arXiv Detail & Related papers (2021-07-21T12:26:46Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Accelerating Simulation of Stiff Nonlinear Systems using Continuous-Time
Echo State Networks [1.1545092788508224]
We present a data-driven method for generating surrogates of nonlinear ordinary differential equations with dynamics at widely separated timescales.
We empirically demonstrate near-constant time performance using our CTESNs on a physically motivated scalable model of a heating system.
arXiv Detail & Related papers (2020-10-07T17:40:06Z) - Forecasting Sequential Data using Consistent Koopman Autoencoders [52.209416711500005]
A new class of physics-based methods related to Koopman theory has been introduced, offering an alternative for processing nonlinear dynamical systems.
We propose a novel Consistent Koopman Autoencoder model which, unlike the majority of existing work, leverages the forward and backward dynamics.
Key to our approach is a new analysis which explores the interplay between consistent dynamics and their associated Koopman operators.
arXiv Detail & Related papers (2020-03-04T18:24:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.