Sparse identification of nonlinear dynamics and Koopman operators with Shallow Recurrent Decoder Networks
- URL: http://arxiv.org/abs/2501.13329v2
- Date: Tue, 01 Apr 2025 04:15:58 GMT
- Title: Sparse identification of nonlinear dynamics and Koopman operators with Shallow Recurrent Decoder Networks
- Authors: Mars Liyao Gao, Jan P. Williams, J. Nathan Kutz,
- Abstract summary: We present a method to jointly solve the sensing and model identification problems with simple implementation, efficient, and robust performance.<n>SINDy-SHRED uses Gated Recurrent Units to model sparse sensor measurements along with a shallow network decoder to reconstruct the full-temporal field from the latent state space.<n>We conduct systematic experimental studies on PDE data such as turbulent flows, real-world sensor measurements for sea surface temperature, and direct video data.
- Score: 3.1484174280822845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling real-world spatio-temporal data is exceptionally difficult due to inherent high dimensionality, measurement noise, partial observations, and often expensive data collection procedures. In this paper, we present Sparse Identification of Nonlinear Dynamics with SHallow REcurrent Decoder networks (SINDy-SHRED), a method to jointly solve the sensing and model identification problems with simple implementation, efficient computation, and robust performance. SINDy-SHRED uses Gated Recurrent Units to model the temporal sequence of sparse sensor measurements along with a shallow decoder network to reconstruct the full spatio-temporal field from the latent state space. Our algorithm introduces a SINDy-based regularization for which the latent space progressively converges to a SINDy-class functional, provided the projection remains within the set. In restricting SINDy to a linear model, a Koopman-SHRED model is generated. SINDy-SHRED (i) learns a symbolic and interpretable generative model of a parsimonious and low-dimensional latent space for the complex spatio-temporal dynamics, (ii) discovers new physics models even for well-known physical systems, (iii) achieves provably robust convergence with an observed globally convex loss landscape, and (iv) achieves superior accuracy, data efficiency, and training time, all with fewer model parameters. We conduct systematic experimental studies on PDE data such as turbulent flows, real-world sensor measurements for sea surface temperature, and direct video data. The interpretable SINDy and Koopman models of latent state dynamics enable stable and accurate long-term video predictions, outperforming all current baseline deep learning models in accuracy, training time, and data requirements, including Convolutional LSTM, PredRNN, ResNet, and SimVP.
Related papers
- Hybrid machine learning models based on physical patterns to accelerate CFD simulations: a short guide on autoregressive models [3.780691701083858]
This study presents an innovative integration of High-Order Singular Value Decomposition with Long Short-Term Memory (LSTM) architectures to address the complexities of reduced-order modeling (ROM) in fluid dynamics.
The methodology is tested across numerical and experimental data sets, including two- and three-dimensional (2D and 3D) cylinder wake flows, spanning both laminar and turbulent regimes.
The results demonstrate that HOSVD outperforms SVD in all tested scenarios, as evidenced by using different error metrics.
arXiv Detail & Related papers (2025-04-09T10:56:03Z) - Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
We propose an efficient transformed Gaussian process state-space model (ETGPSSM) for scalable and flexible modeling of high-dimensional, non-stationary dynamical systems.
Specifically, our ETGPSSM integrates a single shared GP with input-dependent normalizing flows, yielding an expressive implicit process prior that captures complex, non-stationary transition dynamics.
Our ETGPSSM outperforms existing GPSSMs and neural network-based SSMs in terms of computational efficiency and accuracy.
arXiv Detail & Related papers (2025-03-24T03:19:45Z) - Recovering implicit physics model under real-world constraints [6.2178318166123185]
We propose a novel liquid time constant neural network (LTC-NN) based architecture to recover underlying model of physical dynamics from real-world data.<n>The LTC-NN architecture is more accurate in recovering implicit physics model coefficients than the state-of-the-art sparse model recovery approaches.
arXiv Detail & Related papers (2024-12-03T07:11:21Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Path-minimizing Latent ODEs for improved extrapolation and inference [0.0]
Latent ODE models provide flexible descriptions of dynamic systems, but they can struggle with extrapolation and predicting complicated non-linear dynamics.
In this paper we exploit this dichotomy by encouraging time-independent latent representations.
By replacing the common variational penalty in latent space with an $ell$ penalty on the path length of each system, the models learn data representations that can easily be distinguished from those of systems with different configurations.
This results in faster training, smaller models, more accurate and long-time extrapolation compared to the baseline ODE models with GRU, RNN, and LSTM/decoders on tests with
arXiv Detail & Related papers (2024-10-11T15:50:01Z) - KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
We introduce KFD-NeRF, a novel dynamic neural radiance field integrated with an efficient and high-quality motion reconstruction framework based on Kalman filtering.
Our key idea is to model the dynamic radiance field as a dynamic system whose temporally varying states are estimated based on two sources of knowledge: observations and predictions.
Our KFD-NeRF demonstrates similar or even superior performance within comparable computational time and state-of-the-art view synthesis performance with thorough training.
arXiv Detail & Related papers (2024-07-18T05:48:24Z) - Learning Spatiotemporal Dynamical Systems from Point Process Observations [7.381752536547389]
Current neural network-based model approaches fall short when faced with data that is collected randomly over time and space.
In response, we developed a new method that can effectively learn from such process observations.
Our model integrates techniques from neural differential equations, neural point processes, implicit neural representations and amortized variational inference.
arXiv Detail & Related papers (2024-06-01T09:03:32Z) - Temporally-Consistent Koopman Autoencoders for Forecasting Dynamical Systems [38.36312939874359]
We introduce the Temporally-Consistent Koopman Autoencoder (tcKAE)<n>tcKAE generates accurate long-term predictions even with limited and noisy training data.<n>We demonstrate tcKAE's superior performance over state-of-the-art KAE models across a variety of test cases.
arXiv Detail & Related papers (2024-03-19T00:48:25Z) - Complexity Matters: Rethinking the Latent Space for Generative Modeling [65.64763873078114]
In generative modeling, numerous successful approaches leverage a low-dimensional latent space, e.g., Stable Diffusion.
In this study, we aim to shed light on this under-explored topic by rethinking the latent space from the perspective of model complexity.
arXiv Detail & Related papers (2023-07-17T07:12:29Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
We propose LordNet, a tunable and efficient neural network for modeling entanglements.
The experiments on solving Poisson's equation and (2D and 3D) Navier-Stokes equation demonstrate that the long-range entanglements can be well modeled by the LordNet.
arXiv Detail & Related papers (2022-06-19T14:41:08Z) - gLaSDI: Parametric Physics-informed Greedy Latent Space Dynamics
Identification [0.5249805590164902]
A physics-informed greedy Latent Space Dynamics Identification (gLa) method is proposed for accurate, efficient, and robust data-driven reduced-order modeling.
An interactive training algorithm is adopted for the autoencoder and local DI models, which enables identification of simple latent-space dynamics.
The effectiveness of the proposed framework is demonstrated by modeling various nonlinear dynamical problems.
arXiv Detail & Related papers (2022-04-26T00:15:46Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
Partial differential equations (SPDEs) are significant tools for modeling dynamics in many areas including atmospheric sciences and physics.
We propose the Neural Operator with Regularity Structure (NORS) which incorporates the feature vectors for modeling dynamics driven by SPDEs.
We conduct experiments on various of SPDEs including the dynamic Phi41 model and the 2d Navier-Stokes equation.
arXiv Detail & Related papers (2022-04-13T08:53:41Z) - KalmanNet: Neural Network Aided Kalman Filtering for Partially Known
Dynamics [84.18625250574853]
We present KalmanNet, a real-time state estimator that learns from data to carry out Kalman filtering under non-linear dynamics.
We numerically demonstrate that KalmanNet overcomes nonlinearities and model mismatch, outperforming classic filtering methods.
arXiv Detail & Related papers (2021-07-21T12:26:46Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Inferring, Predicting, and Denoising Causal Wave Dynamics [3.9407250051441403]
The DISTributed Artificial neural Network Architecture (DISTANA) is a generative, recurrent graph convolution neural network.
We show that DISTANA is very well-suited to denoise data streams, given that re-occurring patterns are observed.
It produces stable and accurate closed-loop predictions even over hundreds of time steps.
arXiv Detail & Related papers (2020-09-19T08:33:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.