Temporally-Consistent Koopman Autoencoders for Forecasting Dynamical Systems
- URL: http://arxiv.org/abs/2403.12335v2
- Date: Wed, 08 Jan 2025 04:53:52 GMT
- Title: Temporally-Consistent Koopman Autoencoders for Forecasting Dynamical Systems
- Authors: Indranil Nayak, Ananda Chakrabarty, Mrinal Kumar, Fernando Teixeira, Debdipta Goswami,
- Abstract summary: We introduce the Temporally-Consistent Koopman Autoencoder (tcKAE)
tcKAE generates accurate long-term predictions even with limited and noisy training data.
We demonstrate tcKAE's superior performance over state-of-the-art KAE models across a variety of test cases.
- Score: 38.36312939874359
- License:
- Abstract: Absence of sufficiently high-quality data often poses a key challenge in data-driven modeling of high-dimensional spatio-temporal dynamical systems. Koopman Autoencoders (KAEs) harness the expressivity of deep neural networks (DNNs), the dimension reduction capabilities of autoencoders, and the spectral properties of the Koopman operator to learn a reduced-order feature space with simpler, linear dynamics. However, the effectiveness of KAEs is hindered by limited and noisy training datasets, leading to poor generalizability. To address this, we introduce the Temporally-Consistent Koopman Autoencoder (tcKAE), designed to generate accurate long-term predictions even with limited and noisy training data. This is achieved through a consistency regularization term that enforces prediction coherence across different time steps, thus enhancing the robustness and generalizability of tcKAE over existing models. We provide analytical justification for this approach based on Koopman spectral theory and empirically demonstrate tcKAE's superior performance over state-of-the-art KAE models across a variety of test cases, including simple pendulum oscillations, kinetic plasma, and fluid flow data.
Related papers
- Sparse identification of nonlinear dynamics and Koopman operators with Shallow Recurrent Decoder Networks [3.1484174280822845]
We present S Identification of Dynamics with SHallow REcurrent Decoder networks (SINDy-SHRED), a method to jointly solve the sensing and model identification problems.
SINDy-SHRED uses Gated Recurrent Units (GRUs) to model the temporal sequence of sensor measurements along with shallow decoder network to reconstruct the full field from the latent state space.
We conduct a systematic experimental study including synthetic PDE data, real-world sensor measurements for sea surface temperature, and direct video data.
arXiv Detail & Related papers (2025-01-23T02:18:13Z) - Multi-Head Self-Attending Neural Tucker Factorization [5.734615417239977]
We introduce a neural network-based tensor factorization approach tailored for learning representations of high-dimensional and incomplete (HDI) tensors.
The proposed MSNTucF model demonstrates superior performance compared to state-of-the-art benchmark models in estimating missing observations.
arXiv Detail & Related papers (2025-01-16T13:04:15Z) - Self-STORM: Deep Unrolled Self-Supervised Learning for Super-Resolution Microscopy [55.2480439325792]
We introduce deep unrolled self-supervised learning, which alleviates the need for such data by training a sequence-specific, model-based autoencoder.
Our proposed method exceeds the performance of its supervised counterparts.
arXiv Detail & Related papers (2024-03-25T17:40:32Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
We introduce Koopman VAE, a new generative framework that is based on a novel design for the model prior.
Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map.
KoVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks.
arXiv Detail & Related papers (2023-10-04T07:14:43Z) - Koopman Invertible Autoencoder: Leveraging Forward and Backward Dynamics
for Temporal Modeling [13.38194491846739]
We propose a novel machine learning model based on Koopman operator theory, which we call Koopman Invertible Autoencoders (KIA)
KIA captures the inherent characteristic of the system by modeling both forward and backward dynamics in the infinite-dimensional Hilbert space.
This enables us to efficiently learn low-dimensional representations, resulting in more accurate predictions of long-term system behavior.
arXiv Detail & Related papers (2023-09-19T03:42:55Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - Predicting Physics in Mesh-reduced Space with Temporal Attention [15.054026802351146]
We propose a new method that captures long-term dependencies through a transformer-style temporal attention model.
Our method outperforms a competitive GNN baseline on several complex fluid dynamics prediction tasks.
We believe our approach paves the way to bringing the benefits of attention-based sequence models to solving high-dimensional complex physics tasks.
arXiv Detail & Related papers (2022-01-22T18:32:54Z) - KalmanNet: Neural Network Aided Kalman Filtering for Partially Known
Dynamics [84.18625250574853]
We present KalmanNet, a real-time state estimator that learns from data to carry out Kalman filtering under non-linear dynamics.
We numerically demonstrate that KalmanNet overcomes nonlinearities and model mismatch, outperforming classic filtering methods.
arXiv Detail & Related papers (2021-07-21T12:26:46Z) - Forecasting Sequential Data using Consistent Koopman Autoencoders [52.209416711500005]
A new class of physics-based methods related to Koopman theory has been introduced, offering an alternative for processing nonlinear dynamical systems.
We propose a novel Consistent Koopman Autoencoder model which, unlike the majority of existing work, leverages the forward and backward dynamics.
Key to our approach is a new analysis which explores the interplay between consistent dynamics and their associated Koopman operators.
arXiv Detail & Related papers (2020-03-04T18:24:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.