論文の概要: Semisupervised score based matching algorithm to evaluate the effect of public health interventions
- arxiv url: http://arxiv.org/abs/2403.12367v1
- Date: Tue, 19 Mar 2024 02:24:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 15:41:42.626387
- Title: Semisupervised score based matching algorithm to evaluate the effect of public health interventions
- Title(参考訳): 公衆衛生介入の効果評価のための半教師付きスコアベースマッチングアルゴリズム
- Authors: Hongzhe Zhang, Jiasheng Shi, Jing Huang,
- Abstract要約: 1対1のマッチングアルゴリズムでは、マッチする多数の"ペア"は、大きなサンプルからの情報と多数のタスクの両方を意味する可能性がある。
本稿では,2次スコア関数 $S_beta(x_i,x_j)= betaT (x_i-x_j)(x_i-x_j)T beta$ に基づく新しい1対1マッチングアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 3.221788913179251
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multivariate matching algorithms "pair" similar study units in an observational study to remove potential bias and confounding effects caused by the absence of randomizations. In one-to-one multivariate matching algorithms, a large number of "pairs" to be matched could mean both the information from a large sample and a large number of tasks, and therefore, to best match the pairs, such a matching algorithm with efficiency and comparatively limited auxiliary matching knowledge provided through a "training" set of paired units by domain experts, is practically intriguing. We proposed a novel one-to-one matching algorithm based on a quadratic score function $S_{\beta}(x_i,x_j)= \beta^T (x_i-x_j)(x_i-x_j)^T \beta$. The weights $\beta$, which can be interpreted as a variable importance measure, are designed to minimize the score difference between paired training units while maximizing the score difference between unpaired training units. Further, in the typical but intricate case where the training set is much smaller than the unpaired set, we propose a \underline{s}emisupervised \underline{c}ompanion \underline{o}ne-\underline{t}o-\underline{o}ne \underline{m}atching \underline{a}lgorithm (SCOTOMA) that makes the best use of the unpaired units. The proposed weight estimator is proved to be consistent when the truth matching criterion is indeed the quadratic score function. When the model assumptions are violated, we demonstrate that the proposed algorithm still outperforms some popular competing matching algorithms through a series of simulations. We applied the proposed algorithm to a real-world study to investigate the effect of in-person schooling on community Covid-19 transmission rate for policy making purpose.
- Abstract(参考訳): 多変量マッチングアルゴリズムは、ランダム化の欠如によって生じる潜在的なバイアスと共起効果を取り除くために、観察研究において類似した研究ユニットを「ペア」する。
1対1の多変量マッチングアルゴリズムでは、マッチする多数の"ペア"は、大量のサンプルからの情報と多数のタスクの両方を意味する可能性があるため、マッチングアルゴリズムと効率性があり、ドメインの専門家によるペアユニットの"トレーニング"セットを通じて提供される比較的限定的なマッチング知識の両方が実際に興味をそそる。
我々は2次スコア関数 $S_{\beta}(x_i,x_j)= \beta^T (x_i-x_j)(x_i-x_j)^T \beta$ に基づく新しい1対1マッチングアルゴリズムを提案した。
重み$\beta$は、可変重要度として解釈でき、ペアトレーニングユニット間のスコア差を最小限に抑えつつ、未ペアトレーニングユニット間のスコア差を最大化するように設計されている。
さらに、トレーニングセットが未ペア集合よりもはるかに小さい典型的だが複雑な場合、未ペア集合を最大限活用する \underline{s}emisupervised \underline{c}ompanion \underline{o}ne-\underline{o}o-\underline{o}ne \underline{m}atching \underline{a}lgorithm (SCOTOMA) を提案する。
提案した重み推定器は、真理マッチング基準が2次スコア関数であるときに一貫性があることが証明される。
モデル仮定に違反した場合、提案アルゴリズムは一連のシミュレーションにより競合するアルゴリズムよりも優れていることを示す。
提案アルゴリズムを実世界調査に応用し,政策立案のためのコミュニティ Covid-19 送信率に及ぼす個人教育の影響を調べた。
関連論文リスト
- A Novel Ranking Scheme for the Performance Analysis of Stochastic Optimization Algorithms using the Principles of Severity [9.310464457958844]
複数の単目的最適化問題に対してアルゴリズムをランク付けする新しいランキング方式を提案する。
アルゴリズムの結果は、ロバストなブートストラップに基づく仮説テスト手法を用いて比較される。
論文 参考訳(メタデータ) (2024-05-31T19:35:34Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - Bipartite Ranking Fairness through a Model Agnostic Ordering Adjustment [54.179859639868646]
本稿では,二部類ランキングにおける公平性を実現するためのモデルに依存しない後処理フレームワークxOrderを提案する。
xOrderは、教師なしおよび教師なしの公正度メトリックを含む、さまざまな分類モデルとランキングフェアネスメトリクスと互換性がある。
提案アルゴリズムを,4つのベンチマークデータセットと2つの実世界の患者電子健康記録リポジトリ上で評価した。
論文 参考訳(メタデータ) (2023-07-27T07:42:44Z) - Optimal Clustering with Bandit Feedback [57.672609011609886]
本稿では,バンディットフィードバックを用いたオンラインクラスタリングの問題点について考察する。
これは、NPハード重み付きクラスタリング問題をサブルーチンとして解決する必要性を回避するための、シーケンシャルなテストのための新しい停止規則を含む。
合成および実世界のデータセットの広範なシミュレーションを通して、BOCの性能は下界と一致し、非適応的ベースラインアルゴリズムよりも大幅に優れることを示す。
論文 参考訳(メタデータ) (2022-02-09T06:05:05Z) - Deep Probabilistic Graph Matching [72.6690550634166]
本稿では,マッチング制約を伴わずに,元のQAPに適合する深層学習ベースのグラフマッチングフレームワークを提案する。
提案手法は,一般的な3つのベンチマーク(Pascal VOC,Wilow Object,SPair-71k)で評価され,すべてのベンチマークにおいて過去の最先端よりも優れていた。
論文 参考訳(メタデータ) (2022-01-05T13:37:27Z) - Improved Algorithms for Agnostic Pool-based Active Classification [20.12178157010804]
プールに依存しない環境でのバイナリ分類のためのアクティブラーニングを検討する。
我々のアルゴリズムは、画像分類データセットにおけるアートアクティブな学習アルゴリズムの状況よりも優れている。
論文 参考訳(メタデータ) (2021-05-13T18:24:30Z) - An Empirical Process Approach to the Union Bound: Practical Algorithms
for Combinatorial and Linear Bandits [34.06611065493047]
本稿では、信頼度と予算設定の固定化において、純探索線形帯域問題に対する近似アルゴリズムを提案する。
サンプルの複雑性がインスタンスの幾何でスケールし、アームの数に縛られた明示的な結合を避けるアルゴリズムを提供する。
また,固定予算設定における線形帯域幅に対する最初のアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-21T00:56:33Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z) - Ranking a set of objects: a graph based least-square approach [70.7866286425868]
同一労働者の群集によるノイズの多いペアワイズ比較から始まる$N$オブジェクトのランク付けの問題について考察する。
品質評価のために,最小二乗内在的最適化基準に依存する非適応的ランキングアルゴリズムのクラスを提案する。
論文 参考訳(メタデータ) (2020-02-26T16:19:09Z) - Learning Sparse Classifiers: Continuous and Mixed Integer Optimization
Perspectives [10.291482850329892]
混合整数計画法(MIP)は、(最適に) $ell_0$-正規化回帰問題を解くために用いられる。
数分で5万ドルの機能を処理できる正確なアルゴリズムと、$papprox6$でインスタンスに対処できる近似アルゴリズムの2つのクラスを提案する。
さらに,$ell$-regularizedsに対する新しい推定誤差境界を提案する。
論文 参考訳(メタデータ) (2020-01-17T18:47:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。