論文の概要: FairSTG: Countering performance heterogeneity via collaborative sample-level optimization
- arxiv url: http://arxiv.org/abs/2403.12391v1
- Date: Tue, 19 Mar 2024 02:59:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 15:41:42.530081
- Title: FairSTG: Countering performance heterogeneity via collaborative sample-level optimization
- Title(参考訳): FairSTG: 協調的なサンプルレベルの最適化による性能不均一性対策
- Authors: Gengyu Lin, Zhengyang Zhou, Qihe Huang, Kuo Yang, Shifen Cheng, Yang Wang,
- Abstract要約: スマートStemporal Graph Learning(FairSTG)のためのモデルに依存しないFairness-awareフレームワークを提案する。
本研究は, 都市部における時間的資源配分のリスクを軽減できる可能性がある。
- 参考スコア(独自算出の注目度): 11.332049332977396
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatiotemporal learning plays a crucial role in mobile computing techniques to empower smart cites. While existing research has made great efforts to achieve accurate predictions on the overall dataset, they still neglect the significant performance heterogeneity across samples. In this work, we designate the performance heterogeneity as the reason for unfair spatiotemporal learning, which not only degrades the practical functions of models, but also brings serious potential risks to real-world urban applications. To fix this gap, we propose a model-independent Fairness-aware framework for SpatioTemporal Graph learning (FairSTG), which inherits the idea of exploiting advantages of well-learned samples to challenging ones with collaborative mix-up. Specifically, FairSTG consists of a spatiotemporal feature extractor for model initialization, a collaborative representation enhancement for knowledge transfer between well-learned samples and challenging ones, and fairness objectives for immediately suppressing sample-level performance heterogeneity. Experiments on four spatiotemporal datasets demonstrate that our FairSTG significantly improves the fairness quality while maintaining comparable forecasting accuracy. Case studies show FairSTG can counter both spatial and temporal performance heterogeneity by our sample-level retrieval and compensation, and our work can potentially alleviate the risks on spatiotemporal resource allocation for underrepresented urban regions.
- Abstract(参考訳): 時空間学習は、スマートな引用力を高めるためのモバイルコンピューティング技術において重要な役割を担っている。
既存の研究はデータセット全体の正確な予測を達成するために多大な努力をしてきたが、それでもサンプル間の大きなパフォーマンスの不均一性を無視している。
本研究では, 不公平な時空間学習の理由として, 不公平な時空間学習が, モデルの実用的機能を低下させるだけでなく, 現実の都市への適用にも重大なリスクをもたらすことを示唆する。
このギャップを解消するために,SpaatioTemporal Graph Learning (FairSTG) のためのモデルに依存しないFairness-awareフレームワークを提案する。
特に、FairSTGは、モデル初期化のための時空間的特徴抽出器、よく学習されたサンプルと挑戦的なサンプル間の知識伝達のための協調表現強化、サンプルレベルの不均一性を即時抑制するための公正性目的からなる。
4つの時空間データセットの実験により、FairSTGは、同等の予測精度を維持しながら、フェアネス品質を著しく改善することを示した。
ケーススタディでは、サンプルレベルの検索と補償により、FairSTGは空間的および時間的パフォーマンスの不均一性を両立させることができることが示され、我々の研究は、表現不足の都市部における時空間資源配分のリスクを軽減できる可能性がある。
関連論文リスト
- Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
異なるタスクシナリオのモデルアライメントを改善するために,不確実性認識学習(UAL)を提案する。
トレーニングのラベルの平滑化値を個々のサンプルの不確実性に応じて適応的に設定する。
広く使われているベンチマーク実験では、我々のUALは標準教師あり微調整よりも著しく優れています。
論文 参考訳(メタデータ) (2024-06-07T11:37:45Z) - Enhancing Fairness in Neural Networks Using FairVIC [0.0]
自動意思決定システム、特にディープラーニングモデルにおけるバイアスの緩和は、公平性を達成する上で重要な課題である。
FairVICは、トレーニング段階で固有のバイアスに対処することによって、ニューラルネットワークの公平性を高めるために設計された革新的なアプローチである。
我々は、モデルの精度を有害な程度に向上させることなく、テスト対象のすべての指標の公平性を大幅に改善する。
論文 参考訳(メタデータ) (2024-04-28T10:10:21Z) - GCC: Generative Calibration Clustering [55.44944397168619]
本稿では,特徴学習と拡張をクラスタリングに組み込む新しいGCC法を提案する。
まず,実検体と実検体間の固有関係を識別する識別的特徴アライメント機構を開発する。
第二に、より信頼性の高いクラスタ割り当てを生成するための自己教師付きメトリック学習を設計する。
論文 参考訳(メタデータ) (2024-04-14T01:51:11Z) - Learning Off-policy with Model-based Intrinsic Motivation For Active Online Exploration [15.463313629574111]
本稿では,連続制御タスクにおけるサンプル効率の高い探索手法について検討する。
本稿では,予測モデルと非政治学習要素を組み込んだRLアルゴリズムを提案する。
パラメーターのオーバーヘッドを発生させずに本質的な報酬を導き出す。
論文 参考訳(メタデータ) (2024-03-31T11:39:11Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
モーメントマッチングの目的によってモチベーションされ、複合的エラーを軽減し、局所的(しかし前方的な)遷移ポリシーを最適化する。
推論において、学習されたポリシーは反復的なサンプリングのジェネレータとして機能し、学習されたエネルギーはサンプルの品質を評価するための軌道レベル尺度として機能する。
論文 参考訳(メタデータ) (2023-11-02T16:45:25Z) - COSTAR: Improved Temporal Counterfactual Estimation with Self-Supervised
Learning [35.119957381211236]
我々は,歴史表現を改善するために自己教師付き学習を統合する新しいアプローチであるCOSTAR(Counterfactual Self-Supervised Transformer)を紹介する。
COSTARは、既存のモデルと比較して、推定精度と分布外データへの一般化において優れた性能が得られる。
論文 参考訳(メタデータ) (2023-11-01T22:38:14Z) - STS-CCL: Spatial-Temporal Synchronous Contextual Contrastive Learning
for Urban Traffic Forecasting [4.947443433688782]
本研究は、高度なコントラスト学習を採用し、新しい時空間コントラスト学習(STS-CCL)モデルを提案する。
STS-CCLコントラスト学習モデルに基づく予測器の構築は,既存のトラフィック予測ベンチマークよりも優れた性能を発揮することを示す実験と評価を行った。
論文 参考訳(メタデータ) (2023-07-05T03:47:28Z) - Regularization Through Simultaneous Learning: A Case Study on Plant
Classification [0.0]
本稿では,トランスファーラーニングとマルチタスクラーニングの原則に基づく正規化アプローチである同時学習を紹介する。
我々は、ターゲットデータセットであるUFOP-HVDの補助データセットを活用し、カスタマイズされた損失関数でガイドされた同時分類を容易にする。
興味深いことに,本手法は正規化のないモデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-22T19:44:57Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
本稿ではCAFE(Aligning features)によるCondenseデータセットの新しいスキームを提案する。
このアプローチの核心は、さまざまなスケールにわたる実データと合成データから機能を整合させる効果的な戦略です。
提案したCAFEを様々なデータセットで検証し,概ね最先端技術であることを示す。
論文 参考訳(メタデータ) (2022-03-03T05:58:49Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Generalization Properties of Optimal Transport GANs with Latent
Distribution Learning [52.25145141639159]
本研究では,潜伏分布とプッシュフォワードマップの複雑さの相互作用が性能に与える影響について検討する。
我々の分析に感銘を受けて、我々はGANパラダイム内での潜伏分布とプッシュフォワードマップの学習を提唱した。
論文 参考訳(メタデータ) (2020-07-29T07:31:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。