論文の概要: Enhancing Fairness in Neural Networks Using FairVIC
- arxiv url: http://arxiv.org/abs/2404.18134v1
- Date: Sun, 28 Apr 2024 10:10:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 17:43:14.538462
- Title: Enhancing Fairness in Neural Networks Using FairVIC
- Title(参考訳): FairVICを用いたニューラルネットワークの公平性向上
- Authors: Charmaine Barker, Daniel Bethell, Dimitar Kazakov,
- Abstract要約: 自動意思決定システム、特にディープラーニングモデルにおけるバイアスの緩和は、公平性を達成する上で重要な課題である。
FairVICは、トレーニング段階で固有のバイアスに対処することによって、ニューラルネットワークの公平性を高めるために設計された革新的なアプローチである。
我々は、モデルの精度を有害な程度に向上させることなく、テスト対象のすべての指標の公平性を大幅に改善する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Mitigating bias in automated decision-making systems, specifically deep learning models, is a critical challenge in achieving fairness. This complexity stems from factors such as nuanced definitions of fairness, unique biases in each dataset, and the trade-off between fairness and model accuracy. To address such issues, we introduce FairVIC, an innovative approach designed to enhance fairness in neural networks by addressing inherent biases at the training stage. FairVIC differs from traditional approaches that typically address biases at the data preprocessing stage. Instead, it integrates variance, invariance and covariance into the loss function to minimise the model's dependency on protected characteristics for making predictions, thus promoting fairness. Our experimentation and evaluation consists of training neural networks on three datasets known for their biases, comparing our results to state-of-the-art algorithms, evaluating on different sizes of model architectures, and carrying out sensitivity analysis to examine the fairness-accuracy trade-off. Through our implementation of FairVIC, we observed a significant improvement in fairness across all metrics tested, without compromising the model's accuracy to a detrimental extent. Our findings suggest that FairVIC presents a straightforward, out-of-the-box solution for the development of fairer deep learning models, thereby offering a generalisable solution applicable across many tasks and datasets.
- Abstract(参考訳): 自動意思決定システム、特にディープラーニングモデルにおけるバイアスの緩和は、公平性を達成する上で重要な課題である。
この複雑さは、フェアネスのニュアンス定義、各データセットの独自のバイアス、フェアネスとモデルの正確性の間のトレードオフなどの要因に起因している。
このような問題に対処するために、トレーニング段階で固有のバイアスに対処することによって、ニューラルネットワークの公平性を高めるために設計された革新的アプローチであるFairVICを導入する。
FairVICは、データ前処理の段階でバイアスに対処する従来のアプローチとは異なる。
代わりに、分散、不変性、共分散を損失関数に統合し、予測を行うための保護特性へのモデルの依存を最小限に抑え、公正性を促進する。
実験と評価は、ニューラルネットワークをバイアスで知られている3つのデータセットでトレーニングし、その結果を最先端のアルゴリズムと比較し、モデルアーキテクチャの異なるサイズで評価し、公平さと精度のトレードオフを調べるための感度分析を実行する。
FairVICの実装を通じて、モデルの精度を有害な程度に向上させることなく、テスト対象のすべての指標に対するフェアネスの大幅な改善を観察した。
以上の結果から,FairVICはより公平なディープラーニングモデルを開発する上で,簡単かつアウトオブボックスなソリューションであり,多くのタスクやデータセットに適用可能な汎用的なソリューションを提供することが示唆された。
関連論文リスト
- Achievable Fairness on Your Data With Utility Guarantees [16.78730663293352]
機械学習の公平性において、異なるセンシティブなグループ間の格差を最小限に抑えるトレーニングモデルは、しばしば精度を低下させる。
本稿では,各データセットに適合する公平性-正確性トレードオフ曲線を近似する計算効率のよい手法を提案する。
そこで我々は,モデルフェアネスを監査するための堅牢な枠組みを実践者に提供し,評価の不確実性を定量化する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-27T00:59:32Z) - Multi-dimensional Fair Federated Learning [25.07463977553212]
フェデレートラーニング(FL)は、分散データからモデルをトレーニングするための、有望な協調的でセキュアなパラダイムとして登場した。
群フェアネスとクライアントフェアネスは、FLにとって重要である2次元のフェアネスである。
グループフェアネスとクライアントフェアネスを同時に達成するために,mFairFLと呼ばれる手法を提案する。
論文 参考訳(メタデータ) (2023-12-09T11:37:30Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - Learning Fair Classifiers via Min-Max F-divergence Regularization [13.81078324883519]
公平な分類モデルを学ぶための新しい min-max F-divergence regularization フレームワークを提案する。
F分割測度は凸性と微分可能性特性を有することを示す。
提案手法は, 精度と公平性のトレードオフに関して, 最先端の性能を実現するものであることを示す。
論文 参考訳(メタデータ) (2023-06-28T20:42:04Z) - Fair-CDA: Continuous and Directional Augmentation for Group Fairness [48.84385689186208]
公正な制約を課すための詳細なデータ拡張戦略を提案する。
グループ間の感性のある特徴の遷移経路のモデルを正規化することにより、グループフェアネスを実現することができることを示す。
提案手法はデータ生成モデルを仮定せず,精度と公平性の両方に優れた一般化を実現する。
論文 参考訳(メタデータ) (2023-04-01T11:23:00Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
我々のモデルは、グループフェアネスと対実フェアネスという2つのフェアネス基準を共同で最適化する。
論文 参考訳(メタデータ) (2023-03-15T07:13:54Z) - FairAdaBN: Mitigating unfairness with adaptive batch normalization and
its application to dermatological disease classification [14.589159162086926]
バッチ正規化をセンシティブ属性に適応させるFairAdaBNを提案する。
本研究では,FATE(Fairness-Accuracy Trade-off efficiency)と呼ばれる新しい指標を提案する。
2つの皮膚科学データセットを用いた実験により,提案手法はフェアネス基準とFATEの他の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-03-15T02:22:07Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
まず,分布シフト,データ摂動,モデルウェイト摂動の関連性を理論的に検証した。
次に、ターゲットデータセットの公平性を保証するのに十分な条件を分析します。
これらの十分な条件により、ロバストフェアネス正則化(RFR)を提案する。
論文 参考訳(メタデータ) (2023-03-06T17:19:23Z) - Learning Informative Representation for Fairness-aware Multivariate
Time-series Forecasting: A Group-based Perspective [50.093280002375984]
多変量時系列予測モデル(MTS)では変数間の性能不公平性が広く存在する。
フェアネスを意識したMTS予測のための新しいフレームワークであるFairForを提案する。
論文 参考訳(メタデータ) (2023-01-27T04:54:12Z) - How Robust is Your Fairness? Evaluating and Sustaining Fairness under
Unseen Distribution Shifts [107.72786199113183]
CUMA(CUrvature Matching)と呼ばれる新しいフェアネス学習手法を提案する。
CUMAは、未知の分布シフトを持つ未知の領域に一般化可能な頑健な公正性を達成する。
提案手法を3つの人気フェアネスデータセットで評価する。
論文 参考訳(メタデータ) (2022-07-04T02:37:50Z) - FACT: A Diagnostic for Group Fairness Trade-offs [23.358566041117083]
グループフェアネス(グループフェアネス、英: Group Fairness)とは、個人の異なる集団が保護された属性によってどのように異なる扱いを受けるかを測定するフェアネスの概念のクラスである。
グループフェアネスにおけるこれらのトレードオフを体系的に評価できる一般的な診断法を提案する。
論文 参考訳(メタデータ) (2020-04-07T14:15:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。