Diagram Formalization Enhanced Multi-Modal Geometry Problem Solver
- URL: http://arxiv.org/abs/2409.04214v2
- Date: Mon, 9 Sep 2024 02:46:34 GMT
- Title: Diagram Formalization Enhanced Multi-Modal Geometry Problem Solver
- Authors: Zeren Zhang, Jo-Ku Cheng, Jingyang Deng, Lu Tian, Jinwen Ma, Ziran Qin, Xiaokai Zhang, Na Zhu, Tuo Leng,
- Abstract summary: We introduce a new framework that integrates visual features, geometric formal language, and natural language representations.
We propose a novel synthetic data approach and create a large-scale geometric dataset, SynthGeo228K, annotated with both formal and natural language captions.
Our framework improves MLLMs' ability to process geometric diagrams and extends their application to open-ended tasks on the formalgeo7k dataset.
- Score: 11.69164802295844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mathematical reasoning remains an ongoing challenge for AI models, especially for geometry problems that require both linguistic and visual signals. As the vision encoders of most MLLMs are trained on natural scenes, they often struggle to understand geometric diagrams, performing no better in geometry problem solving than LLMs that only process text. This limitation is amplified by the lack of effective methods for representing geometric relationships. To address these issues, we introduce the Diagram Formalization Enhanced Geometry Problem Solver (DFE-GPS), a new framework that integrates visual features, geometric formal language, and natural language representations. We propose a novel synthetic data approach and create a large-scale geometric dataset, SynthGeo228K, annotated with both formal and natural language captions, designed to enhance the vision encoder for a better understanding of geometric structures. Our framework improves MLLMs' ability to process geometric diagrams and extends their application to open-ended tasks on the formalgeo7k dataset.
Related papers
- MagicGeo: Training-Free Text-Guided Geometric Diagram Generation [39.30134393001854]
This paper presents MagicGeo, a training-free framework for generating geometric diagrams from textual descriptions.
MagicGeo formulates the diagram generation process as a coordinate optimization problem, ensuring geometric correctness through a formal language solver, and then employs coordinate-aware generation.
We introduce MagicGeoBench, a benchmark dataset of 220 geometric diagram descriptions, and demonstrate that MagicGeo outperforms current methods in both qualitative and quantitative evaluations.
arXiv Detail & Related papers (2025-02-19T16:20:14Z) - Do Large Language Models Truly Understand Geometric Structures? [15.915781154075615]
We introduce the GeomRel dataset to evaluate large language models' understanding of geometric structures.
We propose the Geometry Chain-of-Thought (GeoCoT) method, which enhances LLMs' ability to identify geometric relationships.
arXiv Detail & Related papers (2025-01-23T15:52:34Z) - GeoX: Geometric Problem Solving Through Unified Formalized Vision-Language Pre-training [45.42400674977197]
GeoX is a multi-modal large model focusing on geometric understanding and reasoning tasks.
We introduce unimodal pre-training to develop a diagram encoder and symbol decoder, enhancing the understanding of geometric images and corpora.
We propose a Generator-And-Sampler Transformer (GS-Former) to generate discriminative queries and eliminate uninformative representations from unevenly distributed geometric signals.
arXiv Detail & Related papers (2024-12-16T15:20:03Z) - Geo-LLaVA: A Large Multi-Modal Model for Solving Geometry Math Problems with Meta In-Context Learning [4.4615747404424395]
Geometry mathematics problems pose significant challenges for large language models (LLMs)
We collect a geometry question-answer dataset by sourcing geometric data from Chinese high school education websites, referred to as GeoMath.
We propose a Large Multi-modal Model (LMM) framework named Geo-LLaVA, which incorporates retrieval augmentation with supervised fine-tuning (SFT) in the training stage, called meta-training, and employs in-context learning (ICL) during inference to improve performance.
arXiv Detail & Related papers (2024-12-12T07:34:09Z) - Fuse, Reason and Verify: Geometry Problem Solving with Parsed Clauses from Diagram [78.79651421493058]
We propose a neural-symbolic model for plane geometry problem solving (PGPS) with three key steps: modal fusion, reasoning process and knowledge verification.
For reasoning, we design an explicable solution program to describe the geometric reasoning process, and employ a self-limited decoder to generate solution program autoregressively.
We also construct a large-scale geometry problem dataset called PGPS9K, containing fine-grained annotations of textual clauses, solution program and involved knowledge solvers.
arXiv Detail & Related papers (2024-07-10T02:45:22Z) - A Survey of Geometric Graph Neural Networks: Data Structures, Models and
Applications [67.33002207179923]
This paper presents a survey of data structures, models, and applications related to geometric GNNs.
We provide a unified view of existing models from the geometric message passing perspective.
We also summarize the applications as well as the related datasets to facilitate later research for methodology development and experimental evaluation.
arXiv Detail & Related papers (2024-03-01T12:13:04Z) - G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language Model [124.68242155098189]
Large language models (LLMs) have shown remarkable proficiency in human-level reasoning and generation capabilities.
G-LLaVA demonstrates exceptional performance in solving geometric problems, significantly outperforming GPT-4-V on the MathVista benchmark with only 7B parameters.
arXiv Detail & Related papers (2023-12-18T17:36:20Z) - GeoQA: A Geometric Question Answering Benchmark Towards Multimodal
Numerical Reasoning [172.36214872466707]
We focus on solving geometric problems, which requires a comprehensive understanding of textual descriptions, visual diagrams, and theorem knowledge.
We propose a Geometric Question Answering dataset GeoQA, containing 5,010 geometric problems with corresponding annotated programs.
arXiv Detail & Related papers (2021-05-30T12:34:17Z) - Inter-GPS: Interpretable Geometry Problem Solving with Formal Language
and Symbolic Reasoning [123.06420835072225]
We construct a new large-scale benchmark, Geometry3K, consisting of 3,002 geometry problems with dense annotation in formal language.
We propose a novel geometry solving approach with formal language and symbolic reasoning, called Interpretable Geometry Problem solver (Inter-GPS)
Inter-GPS incorporates theorem knowledge as conditional rules and performs symbolic reasoning step by step.
arXiv Detail & Related papers (2021-05-10T07:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.