Contextualized Messages Boost Graph Representations
- URL: http://arxiv.org/abs/2403.12529v3
- Date: Mon, 30 Sep 2024 12:56:50 GMT
- Title: Contextualized Messages Boost Graph Representations
- Authors: Brian Godwin Lim, Galvin Brice Lim, Renzo Roel Tan, Kazushi Ikeda,
- Abstract summary: This paper investigates the ability of graph networks (GNNs) to process data that may be represented as graphs.
It shows that only a few GNNs are investigated across all levels of capability.
A mathematical discussion on the relationship between SIRGCN and widely used GNNs is laid out to put the contribution into context.
- Score: 1.5178009359320295
- License:
- Abstract: Graph neural networks (GNNs) have gained significant attention in recent years for their ability to process data that may be represented as graphs. This has prompted several studies to explore their representational capability based on the graph isomorphism task. These works inherently assume a countable node feature representation, potentially limiting their applicability. Interestingly, only a few study GNNs with uncountable node feature representation. In the paper, a novel perspective on the representational capability of GNNs is investigated across all levels$\unicode{x2014}$node-level, neighborhood-level, and graph-level$\unicode{x2014}$when the space of node feature representation is uncountable. More specifically, the strict injective and metric requirements are softly relaxed by employing a pseudometric distance on the space of input to create a soft-injective function such that distinct inputs may produce similar outputs if and only if the pseudometric deems the inputs to be sufficiently similar on some representation. As a consequence, a simple and computationally efficient soft-isomorphic relational graph convolution network (SIR-GCN) that emphasizes the contextualized transformation of neighborhood feature representations via anisotropic and dynamic message functions is proposed. A mathematical discussion on the relationship between SIR-GCN and widely used GNNs is then laid out to put the contribution into context, establishing SIR-GCN as a generalization of classical GNN methodologies. Experiments on synthetic and benchmark datasets then demonstrate the relative superiority of SIR-GCN, outperforming comparable models in node and graph property prediction tasks.
Related papers
- Towards Dynamic Message Passing on Graphs [104.06474765596687]
We propose a novel dynamic message-passing mechanism for graph neural networks (GNNs)
It projects graph nodes and learnable pseudo nodes into a common space with measurable spatial relations between them.
With nodes moving in the space, their evolving relations facilitate flexible pathway construction for a dynamic message-passing process.
arXiv Detail & Related papers (2024-10-31T07:20:40Z) - SF-GNN: Self Filter for Message Lossless Propagation in Deep Graph Neural Network [38.669815079957566]
Graph Neural Network (GNN) with the main idea of encoding graph structure information of graphs by propagation and aggregation has developed rapidly.
It achieved excellent performance in representation learning of multiple types of graphs such as homogeneous graphs, heterogeneous graphs, and more complex graphs like knowledge graphs.
For the phenomenon of performance degradation in deep GNNs, we propose a new perspective.
arXiv Detail & Related papers (2024-07-03T02:40:39Z) - Improving Expressivity of GNNs with Subgraph-specific Factor Embedded
Normalization [30.86182962089487]
Graph Neural Networks (GNNs) have emerged as a powerful category of learning architecture for handling graph-structured data.
We propose a dedicated plug-and-play normalization scheme, termed as SUbgraph-sPEcific FactoR Embedded Normalization (SuperNorm)
arXiv Detail & Related papers (2023-05-31T14:37:31Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - Node Similarity Preserving Graph Convolutional Networks [51.520749924844054]
Graph Neural Networks (GNNs) explore the graph structure and node features by aggregating and transforming information within node neighborhoods.
We propose SimP-GCN that can effectively and efficiently preserve node similarity while exploiting graph structure.
We validate the effectiveness of SimP-GCN on seven benchmark datasets including three assortative and four disassorative graphs.
arXiv Detail & Related papers (2020-11-19T04:18:01Z) - Towards Expressive Graph Representation [16.17079730998607]
Graph Neural Network (GNN) aggregates the neighborhood of each node into the node embedding.
We present a theoretical framework to design a continuous injective set function for neighborhood aggregation in GNN.
We validate the proposed expressive GNN for graph classification on multiple benchmark datasets.
arXiv Detail & Related papers (2020-10-12T03:13:41Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.