Towards Dynamic Message Passing on Graphs
- URL: http://arxiv.org/abs/2410.23686v1
- Date: Thu, 31 Oct 2024 07:20:40 GMT
- Title: Towards Dynamic Message Passing on Graphs
- Authors: Junshu Sun, Chenxue Yang, Xiangyang Ji, Qingming Huang, Shuhui Wang,
- Abstract summary: We propose a novel dynamic message-passing mechanism for graph neural networks (GNNs)
It projects graph nodes and learnable pseudo nodes into a common space with measurable spatial relations between them.
With nodes moving in the space, their evolving relations facilitate flexible pathway construction for a dynamic message-passing process.
- Score: 104.06474765596687
- License:
- Abstract: Message passing plays a vital role in graph neural networks (GNNs) for effective feature learning. However, the over-reliance on input topology diminishes the efficacy of message passing and restricts the ability of GNNs. Despite efforts to mitigate the reliance, existing study encounters message-passing bottlenecks or high computational expense problems, which invokes the demands for flexible message passing with low complexity. In this paper, we propose a novel dynamic message-passing mechanism for GNNs. It projects graph nodes and learnable pseudo nodes into a common space with measurable spatial relations between them. With nodes moving in the space, their evolving relations facilitate flexible pathway construction for a dynamic message-passing process. Associating pseudo nodes to input graphs with their measured relations, graph nodes can communicate with each other intermediately through pseudo nodes under linear complexity. We further develop a GNN model named $\mathtt{\mathbf{N^2}}$ based on our dynamic message-passing mechanism. $\mathtt{\mathbf{N^2}}$ employs a single recurrent layer to recursively generate the displacements of nodes and construct optimal dynamic pathways. Evaluation on eighteen benchmarks demonstrates the superior performance of $\mathtt{\mathbf{N^2}}$ over popular GNNs. $\mathtt{\mathbf{N^2}}$ successfully scales to large-scale benchmarks and requires significantly fewer parameters for graph classification with the shared recurrent layer.
Related papers
- Contextualized Messages Boost Graph Representations [1.5178009359320295]
This paper investigates the ability of graph networks (GNNs) to process data that may be represented as graphs.
It shows that only a few GNNs are investigated across all levels of capability.
A mathematical discussion on the relationship between SIRGCN and widely used GNNs is laid out to put the contribution into context.
arXiv Detail & Related papers (2024-03-19T08:05:49Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - LSGNN: Towards General Graph Neural Network in Node Classification by
Local Similarity [59.41119013018377]
We propose to use the local similarity (LocalSim) to learn node-level weighted fusion, which can also serve as a plug-and-play module.
For better fusion, we propose a novel and efficient Initial Residual Difference Connection (IRDC) to extract more informative multi-hop information.
Our proposed method, namely Local Similarity Graph Neural Network (LSGNN), can offer comparable or superior state-of-the-art performance on both homophilic and heterophilic graphs.
arXiv Detail & Related papers (2023-05-07T09:06:11Z) - From Local to Global: Spectral-Inspired Graph Neural Networks [28.858773653743075]
Graph Neural Networks (GNNs) are powerful deep learning methods for Non-Euclidean data.
MPNNs are message-passing algorithms that aggregate and combine signals in a local graph neighborhood.
MPNNs can suffer from issues like over-smoothing or over-squashing.
arXiv Detail & Related papers (2022-09-24T17:19:00Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - FeatureNorm: L2 Feature Normalization for Dynamic Graph Embedding [39.527059564775094]
Graph convolutional network (GCN) has been widely explored and used in non-Euclidean application domains.
In this paper, we analyze the shrinking properties in the node embedding space at first, and then design a simple yet versatile method.
Experiments on four real-world dynamic graph datasets compared with competitive baseline models demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2021-02-27T09:13:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.