Community detection by spectral methods in multi-layer networks
- URL: http://arxiv.org/abs/2403.12540v1
- Date: Tue, 19 Mar 2024 08:29:47 GMT
- Title: Community detection by spectral methods in multi-layer networks
- Authors: Huan Qing,
- Abstract summary: Community detection in multi-layer networks is a crucial problem in network analysis.
One algorithm is based on the sum of adjacency matrices, while the other utilizes the debiased sum of squared adjacency matrices.
Numerical simulations confirm that our algorithm, employing the debiased sum of squared adjacency matrices, surpasses existing methods for community detection in multi-layer networks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Community detection in multi-layer networks is a crucial problem in network analysis. In this paper, we analyze the performance of two spectral clustering algorithms for community detection within the multi-layer degree-corrected stochastic block model (MLDCSBM) framework. One algorithm is based on the sum of adjacency matrices, while the other utilizes the debiased sum of squared adjacency matrices. We establish consistency results for community detection using these methods under MLDCSBM as the size of the network and/or the number of layers increases. Our theorems demonstrate the advantages of utilizing multiple layers for community detection. Moreover, our analysis indicates that spectral clustering with the debiased sum of squared adjacency matrices is generally superior to spectral clustering with the sum of adjacency matrices. Numerical simulations confirm that our algorithm, employing the debiased sum of squared adjacency matrices, surpasses existing methods for community detection in multi-layer networks. Finally, the analysis of several real-world multi-layer networks yields meaningful insights.
Related papers
- Estimating mixed memberships in multi-layer networks [0.0]
Community detection in multi-layer networks has emerged as a crucial area of modern network analysis.
We propose novel methods to estimate the common mixed memberships in the multi-layer mixed membership block model.
arXiv Detail & Related papers (2024-04-05T07:02:10Z) - Rethinking Clustered Federated Learning in NOMA Enhanced Wireless
Networks [60.09912912343705]
This study explores the benefits of integrating the novel clustered federated learning (CFL) approach with non-independent and identically distributed (non-IID) datasets.
A detailed theoretical analysis of the generalization gap that measures the degree of non-IID in the data distribution is presented.
Solutions to address the challenges posed by non-IID conditions are proposed with the analysis of the properties.
arXiv Detail & Related papers (2024-03-05T17:49:09Z) - Optimal Clustering of Discrete Mixtures: Binomial, Poisson, Block
Models, and Multi-layer Networks [9.57586103097079]
We study the fundamental limit of clustering networks when a multi-layer network is present.
Under the mixture multi-layer block model (MMSBM), we show that the minimax optimal network clustering error rate takes an exponential form.
We propose a novel two-stage network clustering method including a tensor-based algorithm involving both node and sample splitting.
arXiv Detail & Related papers (2023-11-27T07:48:50Z) - Hierarchical Multi-Marginal Optimal Transport for Network Alignment [52.206006379563306]
Multi-network alignment is an essential prerequisite for joint learning on multiple networks.
We propose a hierarchical multi-marginal optimal transport framework named HOT for multi-network alignment.
Our proposed HOT achieves significant improvements over the state-of-the-art in both effectiveness and scalability.
arXiv Detail & Related papers (2023-10-06T02:35:35Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
We study optimization guarantees, i.e., achieving near-zero training loss with the increase in the number of learning epochs.
We show that the threshold on the number of training samples increases with the increase in the network width.
arXiv Detail & Related papers (2023-09-12T13:03:47Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
This paper presents a Deep Clustering via Ensembles (DeepCluE) approach.
It bridges the gap between deep clustering and ensemble clustering by harnessing the power of multiple layers in deep neural networks.
Experimental results on six image datasets confirm the advantages of DeepCluE over the state-of-the-art deep clustering approaches.
arXiv Detail & Related papers (2022-06-01T09:51:38Z) - Perfect Spectral Clustering with Discrete Covariates [68.8204255655161]
We propose a spectral algorithm that achieves perfect clustering with high probability on a class of large, sparse networks.
Our method is the first to offer a guarantee of consistent latent structure recovery using spectral clustering.
arXiv Detail & Related papers (2022-05-17T01:41:06Z) - Community detection in multiplex networks based on orthogonal
nonnegative matrix tri-factorization [26.53951886710295]
We introduce a new multiplex community detection approach that can identify communities that are common across layers as well as those that are unique to each layer.
The proposed algorithm is evaluated on both synthetic and real multiplex networks and compared to state-of-the-art techniques.
arXiv Detail & Related papers (2022-05-02T02:33:15Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - Spectral clustering via adaptive layer aggregation for multi-layer
networks [6.0073653636512585]
We propose integrative spectral clustering approaches based on effective convex layer aggregations.
We show that our methods are remarkably competitive compared to several popularly used methods.
arXiv Detail & Related papers (2020-12-07T21:58:18Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
Multi-view spectral clustering can effectively reveal the intrinsic cluster structure among data.
This paper proposes a multi-view spectral clustering algorithm that learns a high-order optimal neighborhood Laplacian matrix.
Our proposed algorithm generates the optimal Laplacian matrix by searching the neighborhood of the linear combination of both the first-order and high-order base.
arXiv Detail & Related papers (2020-08-31T12:28:40Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
This paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization.
Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2020-08-23T08:25:06Z) - A Multi-Semantic Metapath Model for Large Scale Heterogeneous Network
Representation Learning [52.83948119677194]
We propose a multi-semantic metapath (MSM) model for large scale heterogeneous representation learning.
Specifically, we generate multi-semantic metapath-based random walks to construct the heterogeneous neighborhood to handle the unbalanced distributions.
We conduct systematical evaluations for the proposed framework on two challenging datasets: Amazon and Alibaba.
arXiv Detail & Related papers (2020-07-19T22:50:20Z) - Motif-Based Spectral Clustering of Weighted Directed Networks [6.1448102196124195]
Clustering is an essential technique for network analysis, with applications in a diverse range of fields.
One approach is to capture and cluster higher-order structures using motif adjacency matrices.
We present new and computationally useful matrix formulae for motif adjacency matrices on weighted networks.
arXiv Detail & Related papers (2020-04-02T22:45:28Z) - A unified framework for spectral clustering in sparse graphs [47.82639003096941]
We show that a conveniently parametrized form of regularized Laplacian matrix can be used to perform spectral clustering in sparse networks.
We also exhibit important connections between this proposed matrix and the now popular non-backtracking matrix, the Bethe-Hessian matrix.
arXiv Detail & Related papers (2020-03-20T10:58:37Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
We propose a novel learning scheme for unpaired cross-modality image segmentation.
In our method, we heavily reuse network parameters, by sharing all convolutional kernels across CT and MRI.
We have extensively validated our approach on two multi-class segmentation problems.
arXiv Detail & Related papers (2020-01-06T20:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.