Estimating mixed memberships in multi-layer networks
- URL: http://arxiv.org/abs/2404.03916v2
- Date: Thu, 12 Sep 2024 11:29:27 GMT
- Title: Estimating mixed memberships in multi-layer networks
- Authors: Huan Qing,
- Abstract summary: Community detection in multi-layer networks has emerged as a crucial area of modern network analysis.
We propose novel methods to estimate the common mixed memberships in the multi-layer mixed membership block model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Community detection in multi-layer networks has emerged as a crucial area of modern network analysis. However, conventional approaches often assume that nodes belong exclusively to a single community, which fails to capture the complex structure of real-world networks where nodes may belong to multiple communities simultaneously. To address this limitation, we propose novel spectral methods to estimate the common mixed memberships in the multi-layer mixed membership stochastic block model. The proposed methods leverage the eigen-decomposition of three aggregate matrices: the sum of adjacency matrices, the debiased sum of squared adjacency matrices, and the sum of squared adjacency matrices. We establish rigorous theoretical guarantees for the consistency of our methods. Specifically, we derive per-node error rates under mild conditions on network sparsity, demonstrating their consistency as the number of nodes and/or layers increases under the multi-layer mixed membership stochastic block model. Our theoretical results reveal that the method leveraging the sum of adjacency matrices generally performs poorer than the other two methods for mixed membership estimation in multi-layer networks. We conduct extensive numerical experiments to empirically validate our theoretical findings. For real-world multi-layer networks with unknown community information, we introduce two novel modularity metrics to quantify the quality of mixed membership community detection. Finally, we demonstrate the practical applications of our algorithms and modularity metrics by applying them to real-world multi-layer networks, demonstrating their effectiveness in extracting meaningful community structures.
Related papers
- Community detection by spectral methods in multi-layer networks [0.0]
Community detection in multi-layer networks is a crucial problem in network analysis.
One algorithm is based on the sum of adjacency matrices, while the other utilizes the debiased sum of squared adjacency matrices.
Numerical simulations confirm that our algorithm, employing the debiased sum of squared adjacency matrices, surpasses existing methods for community detection in multi-layer networks.
arXiv Detail & Related papers (2024-03-19T08:29:47Z) - A pseudo-likelihood approach to community detection in weighted networks [4.111899441919165]
We propose a pseudo-likelihood community estimation algorithm for networks with normally distributed edge weights.
We prove that the estimates obtained by the proposed method are consistent under the assumption of homogeneous networks.
We illustrate the method on simulated networks and on a fMRI dataset, where edge weights represent connectivity between brain regions.
arXiv Detail & Related papers (2023-03-10T13:36:10Z) - Synergies between Disentanglement and Sparsity: Generalization and
Identifiability in Multi-Task Learning [79.83792914684985]
We prove a new identifiability result that provides conditions under which maximally sparse base-predictors yield disentangled representations.
Motivated by this theoretical result, we propose a practical approach to learn disentangled representations based on a sparsity-promoting bi-level optimization problem.
arXiv Detail & Related papers (2022-11-26T21:02:09Z) - MGTCOM: Community Detection in Multimodal Graphs [0.34376560669160383]
MGTCOM is an end-to-end framework optimizing network embeddings, communities and the number of communities in tandem.
Our method is competitive against state-of-the-art and performs well in inductive inference.
arXiv Detail & Related papers (2022-11-10T16:11:03Z) - Community detection in multiplex networks based on orthogonal
nonnegative matrix tri-factorization [26.53951886710295]
We introduce a new multiplex community detection approach that can identify communities that are common across layers as well as those that are unique to each layer.
The proposed algorithm is evaluated on both synthetic and real multiplex networks and compared to state-of-the-art techniques.
arXiv Detail & Related papers (2022-05-02T02:33:15Z) - Robustness Certificates for Implicit Neural Networks: A Mixed Monotone
Contractive Approach [60.67748036747221]
Implicit neural networks offer competitive performance and reduced memory consumption.
They can remain brittle with respect to input adversarial perturbations.
This paper proposes a theoretical and computational framework for robustness verification of implicit neural networks.
arXiv Detail & Related papers (2021-12-10T03:08:55Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
This paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization.
Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2020-08-23T08:25:06Z) - A Multi-Semantic Metapath Model for Large Scale Heterogeneous Network
Representation Learning [52.83948119677194]
We propose a multi-semantic metapath (MSM) model for large scale heterogeneous representation learning.
Specifically, we generate multi-semantic metapath-based random walks to construct the heterogeneous neighborhood to handle the unbalanced distributions.
We conduct systematical evaluations for the proposed framework on two challenging datasets: Amazon and Alibaba.
arXiv Detail & Related papers (2020-07-19T22:50:20Z) - Detecting Communities in Heterogeneous Multi-Relational Networks:A
Message Passing based Approach [89.19237792558687]
Community is a common characteristic of networks including social networks, biological networks, computer and information networks.
We propose an efficient message passing based algorithm to simultaneously detect communities for all homogeneous networks.
arXiv Detail & Related papers (2020-04-06T17:36:24Z) - Community Detection on Mixture Multi-layer Networks via Regularized
Tensor Decomposition [12.244594819580831]
We study the problem of community detection in multi-layer networks, where pairs of nodes can be related in multiple modalities.
We propose a tensor-based algorithm (TWIST) to reveal both global/local memberships of nodes, and memberships of layers.
arXiv Detail & Related papers (2020-02-10T06:19:50Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
We propose a novel learning scheme for unpaired cross-modality image segmentation.
In our method, we heavily reuse network parameters, by sharing all convolutional kernels across CT and MRI.
We have extensively validated our approach on two multi-class segmentation problems.
arXiv Detail & Related papers (2020-01-06T20:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.