論文の概要: Prompt-fused framework for Inductive Logical Query Answering
- arxiv url: http://arxiv.org/abs/2403.12646v1
- Date: Tue, 19 Mar 2024 11:30:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 14:33:18.670583
- Title: Prompt-fused framework for Inductive Logical Query Answering
- Title(参考訳): 帰納的論理的問合せ解答のための Prompt-fused フレームワーク
- Authors: Zezhong Xu, Peng Ye, Lei Liang, Huajun Chen, Wen Zhang,
- Abstract要約: 本稿では,Pro-QEという問合せ対応のプロンプトフューズフレームワークを提案する。
論理的クエリにおける未知のエンティティの問題に,我々のモデルがうまく対処できることが示される。
- 参考スコア(独自算出の注目度): 31.736934787328156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Answering logical queries on knowledge graphs (KG) poses a significant challenge for machine reasoning. The primary obstacle in this task stems from the inherent incompleteness of KGs. Existing research has predominantly focused on addressing the issue of missing edges in KGs, thereby neglecting another aspect of incompleteness: the emergence of new entities. Furthermore, most of the existing methods tend to reason over each logical operator separately, rather than comprehensively analyzing the query as a whole during the reasoning process. In this paper, we propose a query-aware prompt-fused framework named Pro-QE, which could incorporate existing query embedding methods and address the embedding of emerging entities through contextual information aggregation. Additionally, a query prompt, which is generated by encoding the symbolic query, is introduced to gather information relevant to the query from a holistic perspective. To evaluate the efficacy of our model in the inductive setting, we introduce two new challenging benchmarks. Experimental results demonstrate that our model successfully handles the issue of unseen entities in logical queries. Furthermore, the ablation study confirms the efficacy of the aggregator and prompt components.
- Abstract(参考訳): 知識グラフ(KG)上の論理的クエリを答えることは、機械推論にとって大きな課題となる。
このタスクの主な障害は、KGsの固有の不完全性に起因する。
既存の研究は、KGsにおけるエッジの欠如の問題に対処することに集中しており、その結果、新しい実体の出現という別の不完全性という側面を無視している。
さらに、既存のメソッドの多くは、推論プロセス中にクエリ全体を包括的に解析するのではなく、それぞれの論理演算子を別々に推論する傾向があります。
本稿では,既存のクエリ埋め込み手法を組み込んで,コンテキスト情報アグリゲーションによる新しいエンティティの埋め込みに対処する,Pro-QEという問合せ対応型プロンプトフューズフレームワークを提案する。
さらに、シンボリッククエリをエンコードして生成されるクエリプロンプトを導入して、全体的な視点からクエリに関連する情報を集める。
帰納的設定におけるモデルの有効性を評価するために,2つの新しい挑戦的ベンチマークを導入する。
実験結果から,本モデルが論理的クエリにおける未知のエンティティの問題にうまく対処できることが示唆された。
さらに、アブレーション研究は凝集剤の有効性を確認し、成分を誘導する。
関連論文リスト
- Improving Multi-hop Logical Reasoning in Knowledge Graphs with Context-Aware Query Representation Learning [3.7411114598484647]
知識グラフのマルチホップ論理的推論は自然言語処理において重要な課題である。
本稿では,既存のマルチホップ論理推論手法の有効性を高めるモデルに依存しない手法を提案する。
提案手法は,3つのマルチホップ推論基盤モデルを継続的に強化し,最大19.5%の性能向上を実現している。
論文 参考訳(メタデータ) (2024-06-11T07:48:20Z) - Type-based Neural Link Prediction Adapter for Complex Query Answering [2.1098688291287475]
本稿では,タイプベースエンティティ関係グラフを構成する新しいモデルであるTypEベースのニューラルリンク予測アダプタ(TENLPA)を提案する。
型情報と複雑な論理的クエリを効果的に結合するために,適応学習機構を導入する。
3つの標準データセットの実験により、TENLPAモデルが複雑なクエリ応答における最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-01-29T10:54:28Z) - Building Interpretable and Reliable Open Information Retriever for New
Domains Overnight [67.03842581848299]
情報検索は、オープンドメイン質問応答(QA)など、多くのダウンストリームタスクにとって重要な要素である。
本稿では、エンティティ/イベントリンクモデルとクエリ分解モデルを用いて、クエリの異なる情報単位により正確にフォーカスする情報検索パイプラインを提案する。
より解釈可能で信頼性が高いが,提案したパイプラインは,5つのIRおよびQAベンチマークにおける通過カバレッジと記述精度を大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-08-09T07:47:17Z) - Query Structure Modeling for Inductive Logical Reasoning Over Knowledge
Graphs [67.043747188954]
KGに対する帰納的論理的推論のための構造モデル付きテキスト符号化フレームワークを提案する。
線形化されたクエリ構造とエンティティを、事前訓練された言語モデルを使ってエンコードして、回答を見つける。
2つの帰納的論理推論データセットと3つの帰納的推論データセットについて実験を行った。
論文 参考訳(メタデータ) (2023-05-23T01:25:29Z) - Complex Logical Reasoning over Knowledge Graphs using Large Language Models [13.594992599230277]
知識グラフ(KG)に対する推論は、エンティティ間の関係を深く理解する必要がある課題である。
現在のアプローチは、論理的なクエリ操作のために、ベクトル空間にエンティティを埋め込むための学習ジオメトリに依存している。
本稿では,文脈的KG探索と論理的クエリ推論を組み合わせた複雑なKG推論を定式化する,言語誘導型知識グラフによる抽象推論(LARK)を提案する。
論文 参考訳(メタデータ) (2023-05-02T02:21:49Z) - Rethinking Complex Queries on Knowledge Graphs with Neural Link Predictors [58.340159346749964]
本稿では,証明可能な推論能力を備えた複雑なクエリを用いたエンドツーエンド学習を支援するニューラルシンボリック手法を提案する。
これまでに検討されていない10種類の新しいクエリを含む新しいデータセットを開発する。
提案手法は,新しいデータセットにおいて先行手法を著しく上回り,既存データセットにおける先行手法を同時に上回っている。
論文 参考訳(メタデータ) (2023-04-14T11:35:35Z) - Logical Message Passing Networks with One-hop Inference on Atomic
Formulas [57.47174363091452]
本稿では,ニューラルネットワーク演算子から知識グラフの埋め込みを分解する,複雑な問合せ応答のためのフレームワークを提案する。
クエリグラフの上に、局所的な原子式上のワンホップ推論とグローバル論理的推論を結びつける論理メッセージパッシングニューラルネットワーク(LMPNN)を提案する。
我々のアプローチは、最先端のニューラルCQAモデルをもたらす。
論文 参考訳(メタデータ) (2023-01-21T02:34:06Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z) - Neural-Symbolic Entangled Framework for Complex Query Answering [22.663509971491138]
複雑な問合せ応答のためのニューラル・アンド・エンタングルド・フレームワーク(ENeSy)を提案する。
これにより、ニューラルネットワークとシンボリック推論が互いに強化され、カスケードエラーとKGの不完全性が軽減される。
ENeSyは、特にリンク予測タスクのみでトレーニングモデルの設定において、いくつかのベンチマークでSOTA性能を達成する。
論文 参考訳(メタデータ) (2022-09-19T06:07:10Z) - Knowledge Base Question Answering by Case-based Reasoning over Subgraphs [81.22050011503933]
本モデルでは,既存のKG補完アルゴリズムよりも複雑な推論パターンを必要とする問合せに対して,より効果的に答えることを示す。
提案モデルは、KBQAベンチマークの最先端モデルよりも優れているか、競合的に動作する。
論文 参考訳(メタデータ) (2022-02-22T01:34:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。