論文の概要: InBox: Recommendation with Knowledge Graph using Interest Box Embedding
- arxiv url: http://arxiv.org/abs/2403.12649v1
- Date: Tue, 19 Mar 2024 11:34:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 14:23:34.415521
- Title: InBox: Recommendation with Knowledge Graph using Interest Box Embedding
- Title(参考訳): InBox: 興味深いボックス埋め込みを用いた知識グラフによる推奨
- Authors: Zezhong Xu, Yincen Qu, Wen Zhang, Lei Liang, Huajun Chen,
- Abstract要約: InBoxと呼ばれる新しい埋め込みモデルを導入する。
知識グラフのエンティティや関係はポイントやボックスとして埋め込まれ、ユーザの興味はボックスとしてモデル化される。
InBoxはレコメンデーションタスクにおいてHAKGやKGINのような最先端のメソッドを大幅に上回っている。
- 参考スコア(独自算出の注目度): 29.91080715740409
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge graphs (KGs) have become vitally important in modern recommender systems, effectively improving performance and interpretability. Fundamentally, recommender systems aim to identify user interests based on historical interactions and recommend suitable items. However, existing works overlook two key challenges: (1) an interest corresponds to a potentially large set of related items, and (2) the lack of explicit, fine-grained exploitation of KG information and interest connectivity. This leads to an inability to reflect distinctions between entities and interests when modeling them in a single way. Additionally, the granularity of concepts in the knowledge graphs used for recommendations tends to be coarse, failing to match the fine-grained nature of user interests. This homogenization limits the precise exploitation of knowledge graph data and interest connectivity. To address these limitations, we introduce a novel embedding-based model called InBox. Specifically, various knowledge graph entities and relations are embedded as points or boxes, while user interests are modeled as boxes encompassing interaction history. Representing interests as boxes enables containing collections of item points related to that interest. We further propose that an interest comprises diverse basic concepts, and box intersection naturally supports concept combination. Across three training steps, InBox significantly outperforms state-of-the-art methods like HAKG and KGIN on recommendation tasks. Further analysis provides meaningful insights into the variable value of different KG data for recommendations. In summary, InBox advances recommender systems through box-based interest and concept modeling for sophisticated knowledge graph exploitation.
- Abstract(参考訳): 知識グラフ(KG)は、現代のレコメンデータシステムにおいて重要な存在であり、性能と解釈可能性を大幅に向上させてきた。
基本的に、リコメンデータシステムは、歴史的相互作用に基づいてユーザーの興味を識別し、適切な項目を推薦することを目的としている。
しかし、既存の研究は、(1)関心が潜在的に大きな関連項目に対応すること、(2)KG情報の明確できめ細かな活用の欠如、および関心の接続性という2つの主要な課題を見落としている。
これにより、エンティティと関心の区別を単一の方法でモデル化することができない。
さらに、リコメンデーションに使用される知識グラフにおける概念の粒度は粗い傾向にあり、ユーザ興味の微細な性質と一致しない。
この均質化は知識グラフデータの正確な利用と利害関係を制限している。
これらの制約に対処するために、InBoxと呼ばれる新しい埋め込みモデルを導入する。
具体的には、様々な知識グラフのエンティティと関係をポイントやボックスとして埋め込んだ上で、ユーザの興味はインタラクション履歴を含むボックスとしてモデル化される。
興味をボックスとして表現することで、その関心に関連する項目点のコレクションを格納することができる。
さらに、興味は多様な基本概念からなり、ボックス交叉は自然に概念の組み合わせをサポートすることを提案する。
3つのトレーニングステップを通じて、InBoxは推奨タスクにおいてHAKGやKGINといった最先端のメソッドを著しく上回っている。
さらに分析することで、さまざまなKGデータの変数値に関する意味のある洞察をレコメンデーションに提供します。
要約すると、InBoxは高度な知識グラフの活用のためのボックスベースの関心と概念モデリングを通じてレコメンデータシステムを前進させる。
関連論文リスト
- Retrieval Augmentation via User Interest Clustering [57.63883506013693]
インダストリアルレコメンデータシステムは、ユーザ・イテム・エンゲージメントのパターンに敏感である。
本稿では,ユーザの関心を効率的に構築し,計算コストの低減を図る新しい手法を提案する。
当社のアプローチはMetaの複数の製品に展開されており、ショートフォームビデオ関連の推奨を助長しています。
論文 参考訳(メタデータ) (2024-08-07T16:35:10Z) - Leveraging Knowledge Graph Embedding for Effective Conversational Recommendation [4.079573593766921]
知識グラフに基づく会話推薦システム(KG-CRS参照)を提案する。
具体的には,まずユーザ・テムグラフとアイテム・アトリビュートグラフを動的グラフに統合し,否定的な項目や属性を除去することで対話プロセス中に動的に変化する。
次に、ユーザ、アイテム、属性の情報埋め込みを、グラフ上の隣人の伝播も考慮して学習する。
論文 参考訳(メタデータ) (2024-08-02T15:38:55Z) - BiVRec: Bidirectional View-based Multimodal Sequential Recommendation [55.87443627659778]
我々は,IDとマルチモーダルの両方で推薦タスクを共同で訓練する,革新的なフレームワークであるBivRecを提案する。
BivRecは5つのデータセットで最先端のパフォーマンスを達成し、様々な実用的な利点を示している。
論文 参考訳(メタデータ) (2024-02-27T09:10:41Z) - Multiple Interest and Fine Granularity Network for User Modeling [3.508126539399186]
ユーザモデリングは、カスタマエクスペリエンスとビジネス収益の両方の観点から、マッチングステージとランキングステージの両方において、産業レコメンデータシステムにおいて、基本的な役割を果たす。
既存のディープラーニングベースのアプローチのほとんどは、アイテムIDとカテゴリIDを活用するが、色やメイトリアルのようなきめ細かい特徴は無視し、ユーザの興味の細かい粒度をモデル化するのを妨げる。
本稿では,ユーザの多目的・細粒度に対処する多目的・細粒度ネットワーク(MFN)を提案し,ユーザの多目的間の類似性関係と組み合わせ関係からモデルを構築した。
論文 参考訳(メタデータ) (2021-12-05T15:12:08Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
知識グラフ(KG)は、推薦システムにおいてますます重要な役割を果たす。
既存のGNNベースのモデルは、きめ細かいインテントレベルでのユーザ項目関係の特定に失敗します。
本稿では,新しいモデルである知識グラフベースインテントネットワーク(kgin)を提案する。
論文 参考訳(メタデータ) (2021-02-14T03:21:36Z) - Knowledge-Enhanced Top-K Recommendation in Poincar\'e Ball [33.90069123451581]
本稿では,知識グラフの階層構造を学習しやすくする,双曲空間における推薦モデルを提案する。
双曲的注意ネットワークを用いて、あるアイテムの隣接エンティティの相対的重要性を決定する。
提案モデルでは,Top-Kレコメンデーションにおいて,NDCG@Kの2~16%,既存モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-01-13T03:16:50Z) - KompaRe: A Knowledge Graph Comparative Reasoning System [85.72488258453926]
本稿では,複数の手がかりに対する共通点と矛盾点の推測を目的とした知識グラフの比較推論を提案する。
我々は,大規模な知識グラフに対して比較推論機能を提供する,最初のプロトタイプシステムであるKompaReを開発した。
論文 参考訳(メタデータ) (2020-11-06T04:57:37Z) - ConsNet: Learning Consistency Graph for Zero-Shot Human-Object
Interaction Detection [101.56529337489417]
画像中のHuman, Action, Object>の形のHOIインスタンスを検出・認識することを目的としたHuman-Object Interaction (HOI) Detectionの問題点を考察する。
我々は、オブジェクト、アクション、インタラクション間の多レベルコンパレンシーは、稀な、あるいは以前には見られなかったHOIのセマンティック表現を生成するための強力な手がかりであると主張している。
提案モデルでは,人-対象のペアの視覚的特徴とHOIラベルの単語埋め込みを入力とし,それらを視覚-意味的関節埋め込み空間にマッピングし,類似度を計測して検出結果を得る。
論文 参考訳(メタデータ) (2020-08-14T09:11:18Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
本稿では,知識グラフ補完タスクにおけるユーザインタラクションデータを活用することで,新たな逆学習手法を提案する。
我々のジェネレータはユーザインタラクションデータから分離されており、識別器の性能を向上させるのに役立ちます。
利用者の暗黙の実体的嗜好を発見するために,グラフニューラルネットワークに基づく精巧な協調学習アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-03-28T05:47:33Z) - Deep Learning on Knowledge Graph for Recommender System: A Survey [36.41255991011155]
知識グラフは、2つのオブジェクトと1つまたは複数の関連属性を接続する高次関係を符号化することができる。
新たなグラフニューラルネットワーク(GNN)の助けを借りて,対象特性と関係性の両方をKGから抽出することができる。
論文 参考訳(メタデータ) (2020-03-25T22:53:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。