論文の概要: DDSB: An Unsupervised and Training-free Method for Phase Detection in Echocardiography
- arxiv url: http://arxiv.org/abs/2403.12787v1
- Date: Tue, 19 Mar 2024 14:51:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 13:53:54.711677
- Title: DDSB: An Unsupervised and Training-free Method for Phase Detection in Echocardiography
- Title(参考訳): 心エコー図における非教師的・非訓練的位相検出法DDSB
- Authors: Zhenyu Bu, Yang Liu, Jiayu Huo, Jingjing Peng, Kaini Wang, Guangquan Zhou, Rachel Sparks, Prokar Dasgupta, Alejandro Granados, Sebastien Ourselin,
- Abstract要約: 本研究では,End-Diastolic (ED) フレームとEnd-Systolic (ES) フレームを識別するための教師なしおよびトレーニング不要な手法を提案する。
アンカー点の同定と方向変形解析により,初期セグメンテーション画像の精度への依存性を効果的に低減する。
本手法は,学習モデルと同等の精度を,関連する欠点を伴わずに達成する。
- 参考スコア(独自算出の注目度): 37.32413956117856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate identification of End-Diastolic (ED) and End-Systolic (ES) frames is key for cardiac function assessment through echocardiography. However, traditional methods face several limitations: they require extensive amounts of data, extensive annotations by medical experts, significant training resources, and often lack robustness. Addressing these challenges, we proposed an unsupervised and training-free method, our novel approach leverages unsupervised segmentation to enhance fault tolerance against segmentation inaccuracies. By identifying anchor points and analyzing directional deformation, we effectively reduce dependence on the accuracy of initial segmentation images and enhance fault tolerance, all while improving robustness. Tested on Echo-dynamic and CAMUS datasets, our method achieves comparable accuracy to learning-based models without their associated drawbacks. The code is available at https://github.com/MRUIL/DDSB
- Abstract(参考訳): 心エコー法による心機能評価には,EDフレームとESフレームの正確な同定が重要である。
しかし、従来の手法には、大量のデータ、医療専門家による広範なアノテーション、重要なトレーニングリソース、しばしば堅牢さの欠如など、いくつかの制限がある。
これらの課題に対処するため、我々は教師なし・訓練なしの手法を提案し、新しい手法では教師なしセグメント化を活用し、セグメント化不正確性に対する耐障害性を高める。
アンカーポイントの同定と方向変形解析により,初期セグメンテーション画像の精度への依存を効果的に低減し,耐故障性を向上させるとともに,ロバスト性を向上させる。
提案手法は,Echo-dynamicおよびCAMUSデータセットを用いて,学習モデルと同等の精度を,関連する欠点を伴わずに達成する。
コードはhttps://github.com/MRUIL/DDSBで入手できる。
関連論文リスト
- CrossMatch: Enhance Semi-Supervised Medical Image Segmentation with Perturbation Strategies and Knowledge Distillation [7.6057981800052845]
CrossMatchは、ラベル付きデータとラベルなしデータの両方からモデルの学習を改善するために、知識蒸留とデュアル戦略レベルの機能レベルを統合する新しいフレームワークである。
本手法は,ラベル付きデータとラベルなしデータのトレーニングのギャップを効果的に最小化することにより,標準ベンチマークにおける他の最先端技術を大幅に超えている。
論文 参考訳(メタデータ) (2024-05-01T07:16:03Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
深層学習モデルは、自動的にMS病変を分節する約束を示しているが、正確な注釈付きデータの不足は、この分野の進歩を妨げている。
我々は,MS病変の不均衡分布とファジィ境界を考慮したDecoupled Hard Label Correction(DHLC)戦略を導入する。
また,集約型中央モデルを利用したCELC(Centrally Enhanced Label Correction)戦略も導入した。
論文 参考訳(メタデータ) (2023-08-31T00:36:10Z) - A Global and Patch-wise Contrastive Loss for Accurate Automated Exudate
Detection [12.669734891001667]
糖尿病網膜症(DR:diabetic retinopathy)は、視覚障害の主要な原因である。
硬口蓋の早期発見は、糖尿病の治療と視力喪失の予防に役立つDRの同定において重要な役割を担っている。
ハード・エクスデュート・セグメンテーションを最適化する新しい教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-22T17:39:00Z) - Paced-Curriculum Distillation with Prediction and Label Uncertainty for
Image Segmentation [25.20877071896899]
カリキュラム学習では、まず簡単なサンプルをトレーニングし、徐々に困難を増すことが考えられている。
自己ペースト学習では、ペアリング関数はトレーニングの進捗に適応する速度を定義する。
医用画像セグメンテーションのための新しいペースドキュリキュラム蒸留法(PCD)を開発した。
論文 参考訳(メタデータ) (2023-02-02T12:24:14Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Quality control for more reliable integration of deep learning-based
image segmentation into medical workflows [0.23609258021376836]
本稿では,その出力の確実性を推定するために,最先端自動品質制御(QC)手法の解析を行う。
磁気共鳴画像データにおける白色物質の超強度(WMH)を識別する脳画像分割タスクにおける最も有望なアプローチを検証した。
論文 参考訳(メタデータ) (2021-12-06T16:30:43Z) - Data-Uncertainty Guided Multi-Phase Learning for Semi-Supervised Object
Detection [66.10057490293981]
半監視対象検出のためのデータ不確実性誘導多相学習法を提案する。
本手法は,ベースライン手法と比較して異常に動作し,大きなマージンで性能を向上する。
論文 参考訳(メタデータ) (2021-03-29T09:27:23Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。