Equivariant Ensembles and Regularization for Reinforcement Learning in Map-based Path Planning
- URL: http://arxiv.org/abs/2403.12856v3
- Date: Sun, 25 Aug 2024 20:59:10 GMT
- Title: Equivariant Ensembles and Regularization for Reinforcement Learning in Map-based Path Planning
- Authors: Mirco Theile, Hongpeng Cao, Marco Caccamo, Alberto L. Sangiovanni-Vincentelli,
- Abstract summary: This paper proposes a method to construct equivariant policies and invariant value functions without specialized neural network components.
We show how equivariant ensembles and regularization benefit sample efficiency and performance.
- Score: 5.69473229553916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In reinforcement learning (RL), exploiting environmental symmetries can significantly enhance efficiency, robustness, and performance. However, ensuring that the deep RL policy and value networks are respectively equivariant and invariant to exploit these symmetries is a substantial challenge. Related works try to design networks that are equivariant and invariant by construction, limiting them to a very restricted library of components, which in turn hampers the expressiveness of the networks. This paper proposes a method to construct equivariant policies and invariant value functions without specialized neural network components, which we term equivariant ensembles. We further add a regularization term for adding inductive bias during training. In a map-based path planning case study, we show how equivariant ensembles and regularization benefit sample efficiency and performance.
Related papers
- Improving Equivariant Model Training via Constraint Relaxation [31.507956579770088]
Equivariant neural networks have been widely used in a variety of applications due to their ability to generalize well in tasks where the underlying data symmetries are known.
We propose a novel framework for improving the optimization of such models by relaxing the hard equivariance constraint during training.
We provide experimental results on different state-of-the-art network architectures, demonstrating how this training framework can result in equivariant models with improved generalization performance.
arXiv Detail & Related papers (2024-08-23T17:35:08Z) - Winning Prize Comes from Losing Tickets: Improve Invariant Learning by
Exploring Variant Parameters for Out-of-Distribution Generalization [76.27711056914168]
Out-of-Distribution (OOD) Generalization aims to learn robust models that generalize well to various environments without fitting to distribution-specific features.
Recent studies based on Lottery Ticket Hypothesis (LTH) address this problem by minimizing the learning target to find some of the parameters that are critical to the task.
We propose Exploring Variant parameters for Invariant Learning (EVIL) which also leverages the distribution knowledge to find the parameters that are sensitive to distribution shift.
arXiv Detail & Related papers (2023-10-25T06:10:57Z) - Optimization Dynamics of Equivariant and Augmented Neural Networks [2.7918308693131135]
We investigate the optimization of neural networks on symmetric data.
We compare the strategy of constraining the architecture to be equivariant to that of using data augmentation.
Our analysis reveals that even in the latter situation, stationary points may be unstable for augmented training although they are stable for the manifestly equivariant models.
arXiv Detail & Related papers (2023-03-23T17:26:12Z) - Self-Supervised Learning for Group Equivariant Neural Networks [75.62232699377877]
Group equivariant neural networks are the models whose structure is restricted to commute with the transformations on the input.
We propose two concepts for self-supervised tasks: equivariant pretext labels and invariant contrastive loss.
Experiments on standard image recognition benchmarks demonstrate that the equivariant neural networks exploit the proposed self-supervised tasks.
arXiv Detail & Related papers (2023-03-08T08:11:26Z) - Deep Neural Networks with Efficient Guaranteed Invariances [77.99182201815763]
We address the problem of improving the performance and in particular the sample complexity of deep neural networks.
Group-equivariant convolutions are a popular approach to obtain equivariant representations.
We propose a multi-stream architecture, where each stream is invariant to a different transformation.
arXiv Detail & Related papers (2023-03-02T20:44:45Z) - Relaxing Equivariance Constraints with Non-stationary Continuous Filters [20.74154804898478]
The proposed parameterization can be thought of as a building block to allow adjustable symmetry structure in neural networks.
Compared to non-equivariant or strict-equivariant baselines, we experimentally verify that soft equivariance leads to improved performance in terms of test accuracy on CIFAR-10 and CIFAR-100 image classification tasks.
arXiv Detail & Related papers (2022-04-14T18:08:36Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
Leveraging prior knowledge on intraclass variance due to transformations is a powerful method to improve the sample complexity of deep neural networks.
We propose a novel monomial selection algorithm based on pruning methods to allow an application to more complex problems.
We demonstrate the improved sample complexity on the Rotated-MNIST, SVHN and CIFAR-10 datasets.
arXiv Detail & Related papers (2022-02-08T16:16:11Z) - Equivariance and generalization in neural networks [0.0]
We focus on the consequences of incorporating translational equivariance among the network properties.
The benefits of equivariant networks are exemplified by studying a complex scalar field theory.
In most of the tasks our best equivariant architectures can perform and generalize significantly better than their non-equivariant counterparts.
arXiv Detail & Related papers (2021-12-23T12:38:32Z) - Topographic VAEs learn Equivariant Capsules [84.33745072274942]
We introduce the Topographic VAE: a novel method for efficiently training deep generative models with topographically organized latent variables.
We show that such a model indeed learns to organize its activations according to salient characteristics such as digit class, width, and style on MNIST.
We demonstrate approximate equivariance to complex transformations, expanding upon the capabilities of existing group equivariant neural networks.
arXiv Detail & Related papers (2021-09-03T09:25:57Z) - Group Equivariant Deep Reinforcement Learning [4.997686360064921]
We propose the use of Equivariant CNNs to train RL agents and study their inductive bias for transformation equivariant Q-value approximation.
We demonstrate that equivariant architectures can dramatically enhance the performance and sample efficiency of RL agents in a highly symmetric environment.
arXiv Detail & Related papers (2020-07-01T02:38:48Z) - Invariant Integration in Deep Convolutional Feature Space [77.99182201815763]
We show how to incorporate prior knowledge to a deep neural network architecture in a principled manner.
We report state-of-the-art performance on the Rotated-MNIST dataset.
arXiv Detail & Related papers (2020-04-20T09:45:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.