論文の概要: Wildfire danger prediction optimization with transfer learning
- arxiv url: http://arxiv.org/abs/2403.12871v1
- Date: Tue, 19 Mar 2024 16:15:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 13:34:19.947837
- Title: Wildfire danger prediction optimization with transfer learning
- Title(参考訳): 移動学習による火災危険予測の最適化
- Authors: Spiros Maggioros, Nikos Tsalkitzis,
- Abstract要約: 畳み込みニューラルネットワーク(CNN)は、様々なコンピュータ科学領域で実証されている。
本稿では,山火事の影響地域を特定するための地理空間データ解析へのCNNの適用について検討する。
伝達学習の統合により,CNNモデルは燃焼領域の同定において95%の精度を達成した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional Neural Networks (CNNs) have proven instrumental across various computer science domains, enabling advancements in object detection, classification, and anomaly detection. This paper explores the application of CNNs to analyze geospatial data specifically for identifying wildfire-affected areas. Leveraging transfer learning techniques, we fine-tuned CNN hyperparameters and integrated the Canadian Fire Weather Index (FWI) to assess moisture conditions. The study establishes a methodology for computing wildfire risk levels on a scale of 0 to 5, dynamically linked to weather patterns. Notably, through the integration of transfer learning, the CNN model achieved an impressive accuracy of 95\% in identifying burnt areas. This research sheds light on the inner workings of CNNs and their practical, real-time utility in predicting and mitigating wildfires. By combining transfer learning and CNNs, this study contributes a robust approach to assess burnt areas, facilitating timely interventions and preventative measures against conflagrations.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)は、様々なコンピュータ科学領域において、オブジェクトの検出、分類、異常検出の進歩を可能にする手段であることが証明されている。
本稿では,山火事の影響地域を特定するための地理空間データ解析へのCNNの適用について検討する。
移動学習技術を活用し,CNNハイパーパラメータを微調整し,FWI(Canadian Fire Weather Index)を統合し,湿度条件の評価を行った。
この研究は、気象パターンに動的に関連付けられた0から5のスケールで山火事リスクレベルを計算するための方法論を確立した。
特に, 伝達学習の統合により, CNNモデルは, 燃焼領域の同定において, 95%の精度を達成できた。
この研究は、CNNの内部構造と、山火事を予測・緩和するための実用的でリアルタイムなユーティリティに光を当てている。
本研究は,移動学習とCNNを組み合わせることで,燃え尽きた地域を評価するための堅牢なアプローチに寄与し,タイムリーな介入の促進と炎症予防対策に寄与する。
関連論文リスト
- Comprehensive and Comparative Analysis between Transfer Learning and Custom Built VGG and CNN-SVM Models for Wildfire Detection [1.8616107180090005]
本稿では,山火事検出の文脈における伝達学習の有効性と効果について検討する。
Visual Geometry Group (VGG)-7、VGG-10、Convolutional Neural Network (CNN)-Support Vector Machine (SVM) CNN-SVMの3つのモデルが厳密に比較されている。
我々はこれらのモデルを、山火事の複雑さを捉えたデータセットを用いて訓練し、評価した。
論文 参考訳(メタデータ) (2024-11-12T20:30:23Z) - Impact of White-Box Adversarial Attacks on Convolutional Neural Networks [0.6138671548064356]
本稿では,畳み込みニューラルネットワーク(CNN)のホワイトボックス攻撃に対する感受性について検討する。
本研究は、敵の脅威に対するCNNの堅牢性に関する知見を提供する。
論文 参考訳(メタデータ) (2024-10-02T21:24:08Z) - Physics-informed neural networks for parameter learning of wildfire spreading [2.8686437689115354]
この研究は、解釈可能な山火事拡散モデルの未知のパラメータを学習するために設計された物理情報ニューラルネットワーク(PiNN)を導入している。
The proposed PiNN learns the unknown coefficients of the wildfire model in one- and two-dimensional fire spread scenarios as the Troy Fire。
構想されている物理インフォームドデジタルツインは、インテリジェントな山火事の管理とリスクアセスメントを強化し、アクティブでリアクティブな戦略のための強力なツールを提供する。
論文 参考訳(メタデータ) (2024-06-20T10:21:55Z) - Application of Tensorized Neural Networks for Cloud Classification [0.0]
畳み込みニューラルネットワーク(CNN)は、天気予報、コンピュータビジョン、自律運転、医療画像解析など、さまざまな分野で広く利用されている。
しかし、これらの領域におけるCNNの実装と商業化は、モデルのサイズ、過度な適合、計算時間に関連する課題によって妨げられている。
モデルサイズと計算時間を削減するため,CNN内の高密度層をテンソル化することによる画期的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-21T06:28:22Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Recurrent Convolutional Deep Neural Networks for Modeling Time-Resolved
Wildfire Spread Behavior [0.0]
高忠実度モデルはリアルタイムの火災応答に使用するには計算コストがかかりすぎる。
低忠実度モデルは、経験的測定を統合することで、いくつかの物理的精度と一般化性を犠牲にしている。
機械学習技術は、第一原理物理学を学習することで、これらの目的を橋渡しする能力を提供する。
論文 参考訳(メタデータ) (2022-10-28T21:23:03Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
CNNのホワイトボックス攻撃やブラックボックス攻撃に対する堅牢性について検討する。
結果は、蒸留されたCNN、エージェントベースの最新のprunedモデル、およびバイナライズニューラルネットワークのために示されています。
論文 参考訳(メタデータ) (2021-03-14T20:43:19Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
ワイルドファイアはアメリカ合衆国西海岸で頻繁に起こる最大の災害の1つである。
カリフォルニアの山火事リスクが高い地域を解析・評価するための静的・動的予測モデルを提案します。
論文 参考訳(メタデータ) (2021-03-14T17:56:17Z) - Curriculum By Smoothing [52.08553521577014]
畳み込みニューラルネットワーク(CNN)は、画像分類、検出、セグメンテーションなどのコンピュータビジョンタスクにおいて顕著な性能を示している。
アンチエイリアスフィルタやローパスフィルタを用いてCNNの機能埋め込みを円滑化するエレガントなカリキュラムベースのスキームを提案する。
トレーニング中に特徴マップ内の情報量が増加するにつれて、ネットワークはデータのより優れた表現を徐々に学習することができる。
論文 参考訳(メタデータ) (2020-03-03T07:27:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。