Wildfire danger prediction optimization with transfer learning
- URL: http://arxiv.org/abs/2403.12871v1
- Date: Tue, 19 Mar 2024 16:15:44 GMT
- Title: Wildfire danger prediction optimization with transfer learning
- Authors: Spiros Maggioros, Nikos Tsalkitzis,
- Abstract summary: Convolutional Neural Networks (CNNs) have proven instrumental across various computer science domains.
This paper explores the application of CNNs to analyze geospatial data specifically for identifying wildfire-affected areas.
Through the integration of transfer learning, the CNN model achieved an impressive accuracy of 95% in identifying burnt areas.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional Neural Networks (CNNs) have proven instrumental across various computer science domains, enabling advancements in object detection, classification, and anomaly detection. This paper explores the application of CNNs to analyze geospatial data specifically for identifying wildfire-affected areas. Leveraging transfer learning techniques, we fine-tuned CNN hyperparameters and integrated the Canadian Fire Weather Index (FWI) to assess moisture conditions. The study establishes a methodology for computing wildfire risk levels on a scale of 0 to 5, dynamically linked to weather patterns. Notably, through the integration of transfer learning, the CNN model achieved an impressive accuracy of 95\% in identifying burnt areas. This research sheds light on the inner workings of CNNs and their practical, real-time utility in predicting and mitigating wildfires. By combining transfer learning and CNNs, this study contributes a robust approach to assess burnt areas, facilitating timely interventions and preventative measures against conflagrations.
Related papers
- Impact of White-Box Adversarial Attacks on Convolutional Neural Networks [0.6138671548064356]
We investigate the susceptibility of Convolutional Neural Networks (CNNs) to white-box adversarial attacks.
Our study provides insights into the robustness of CNNs against adversarial threats.
arXiv Detail & Related papers (2024-10-02T21:24:08Z) - Physics-informed neural networks for parameter learning of wildfire spreading [2.8686437689115354]
This work introduces a physics-informed neural network (PiNN) designed to learn the unknown parameters of an interpretable wildfire spreading model.
The proposed PiNN learns the unknown coefficients of the wildfire model in one- and two-dimensional fire spreading scenarios as well as the Troy Fire.
The envisioned physics-informed digital twin will enhance intelligent wildfire management and risk assessment, providing a powerful tool for proactive and reactive strategies.
arXiv Detail & Related papers (2024-06-20T10:21:55Z) - Application of Tensorized Neural Networks for Cloud Classification [0.0]
Convolutional neural networks (CNNs) have gained widespread usage across various fields such as weather forecasting, computer vision, autonomous driving, and medical image analysis.
However, the practical implementation and commercialization of CNNs in these domains are hindered by challenges related to model sizes, overfitting, and computational time.
We propose a groundbreaking approach that involves tensorizing the dense layers in the CNN to reduce model size and computational time.
arXiv Detail & Related papers (2024-03-21T06:28:22Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Recurrent Convolutional Deep Neural Networks for Modeling Time-Resolved
Wildfire Spread Behavior [0.0]
High-fidelity models are too computationally expensive for use in real-time fire response.
Low-fidelity models sacrifice some physical accuracy and generalizability via the integration of empirical measurements.
Machine learning techniques offer the ability to bridge these objectives by learning first-principles physics.
arXiv Detail & Related papers (2022-10-28T21:23:03Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - Investigating the fidelity of explainable artificial intelligence
methods for applications of convolutional neural networks in geoscience [0.02578242050187029]
Methods of explainable artificial intelligence (XAI) are gaining popularity as a means to explain CNN decision-making strategy.
Here, we establish an intercomparison of some of the most popular XAI methods and investigate their fidelity in explaining CNN decisions for geoscientific applications.
arXiv Detail & Related papers (2022-02-07T18:47:15Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
We study robustness of CNNs against white-box and black-box adversarial attacks.
Results are shown for distilled CNNs, agent-based state-of-the-art pruned models, and binarized neural networks.
arXiv Detail & Related papers (2021-03-14T20:43:19Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
Wildfire is one of the biggest disasters that frequently occurs on the west coast of the United States.
We propose static and dynamic prediction models to analyze and assess the areas with high wildfire risks in California.
arXiv Detail & Related papers (2021-03-14T17:56:17Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.