Recurrent Convolutional Deep Neural Networks for Modeling Time-Resolved
Wildfire Spread Behavior
- URL: http://arxiv.org/abs/2210.16411v1
- Date: Fri, 28 Oct 2022 21:23:03 GMT
- Title: Recurrent Convolutional Deep Neural Networks for Modeling Time-Resolved
Wildfire Spread Behavior
- Authors: John Burge, Matthew R. Bonanni, R. Lily Hu, Matthias Ihme
- Abstract summary: High-fidelity models are too computationally expensive for use in real-time fire response.
Low-fidelity models sacrifice some physical accuracy and generalizability via the integration of empirical measurements.
Machine learning techniques offer the ability to bridge these objectives by learning first-principles physics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing incidence and severity of wildfires underscores the necessity
of accurately predicting their behavior. While high-fidelity models derived
from first principles offer physical accuracy, they are too computationally
expensive for use in real-time fire response. Low-fidelity models sacrifice
some physical accuracy and generalizability via the integration of empirical
measurements, but enable real-time simulations for operational use in fire
response. Machine learning techniques offer the ability to bridge these
objectives by learning first-principles physics while achieving computational
speedup. While deep learning approaches have demonstrated the ability to
predict wildfire propagation over large time periods, time-resolved fire-spread
predictions are needed for active fire management. In this work, we evaluate
the ability of deep learning approaches in accurately modeling the
time-resolved dynamics of wildfires. We use an autoregressive process in which
a convolutional recurrent deep learning model makes predictions that propagate
a wildfire over 15 minute increments. We demonstrate the model in application
to three simulated datasets of increasing complexity, containing both field
fires with homogeneous fuel distribution as well as real-world topologies
sampled from the California region of the United States. We show that even
after 100 autoregressive predictions representing more than 24 hours of
simulated fire spread, the resulting models generate stable and realistic
propagation dynamics, achieving a Jaccard score between 0.89 and 0.94 when
predicting the resulting fire scar.
Related papers
- ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Data-Agnostic Model Poisoning against Federated Learning: A Graph
Autoencoder Approach [65.2993866461477]
This paper proposes a data-agnostic, model poisoning attack on Federated Learning (FL)
The attack requires no knowledge of FL training data and achieves both effectiveness and undetectability.
Experiments show that the FL accuracy drops gradually under the proposed attack and existing defense mechanisms fail to detect it.
arXiv Detail & Related papers (2023-11-30T12:19:10Z) - Modelling wildland fire burn severity in California using a spatial
Super Learner approach [0.04188114563181614]
Given the increasing prevalence of wildland fires in the Western US, there is a critical need to develop tools to understand and accurately predict burn severity.
We develop a machine learning model to predict post-fire burn severity using pre-fire remotely sensed data.
When implemented, this model has the potential to the loss of human life, property, resources, and ecosystems in California.
arXiv Detail & Related papers (2023-11-25T22:09:14Z) - Estimating fire Duration using regression methods [0.0]
This paper predicts the burning duration of a known wildfire by RF(random forest), KNN, and XGBoost regression models and also image-based, like CNN and.
By processing the input differently to obtain the optimal outcome, the system is able to make fast and relatively accurate future predictions.
arXiv Detail & Related papers (2023-08-17T12:11:27Z) - A generative model for surrogates of spatial-temporal wildfire
nowcasting [13.551652250858144]
A generative model is proposed using a three-dimensional Vector-Quantized Variational Autoencoders.
The model is tested in the ecoregion of a recent massive wildfire event in California, known as the Chimney fire.
Numerical results show that the model succeed in generating coherent and structured fire scenarios.
arXiv Detail & Related papers (2023-08-05T06:54:18Z) - Predictive World Models from Real-World Partial Observations [66.80340484148931]
We present a framework for learning a probabilistic predictive world model for real-world road environments.
While prior methods require complete states as ground truth for learning, we present a novel sequential training method to allow HVAEs to learn to predict complete states from partially observed states only.
arXiv Detail & Related papers (2023-01-12T02:07:26Z) - Characterizing and overcoming the greedy nature of learning in
multi-modal deep neural networks [62.48782506095565]
We show that due to the greedy nature of learning in deep neural networks, models tend to rely on just one modality while under-fitting the other modalities.
We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning.
arXiv Detail & Related papers (2022-02-10T20:11:21Z) - Learning Wildfire Model from Incomplete State Observations [0.0]
We create a dynamic model for future wildfire predictions of five locations within the western United States through a deep neural network.
The proposed model has distinct features that address the characteristic need in prediction evaluations, including dynamic online estimation and time-series modeling.
arXiv Detail & Related papers (2021-11-28T03:21:46Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
This paper proposes a traffic propagation model that merges multiple heat diffusion kernels into a data-driven prediction model to forecast traffic signals.
We optimize the model parameters using Bayesian inference to minimize the prediction errors and, consequently, determine the mixing ratio of the two approaches.
The proposed model demonstrates prediction accuracy comparable to that of the state-of-the-art deep neural networks with lower computational effort.
arXiv Detail & Related papers (2021-04-27T18:17:42Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Convolutional LSTM Neural Networks for Modeling Wildland Fire Dynamics [0.0]
We evaluate the feasibility of using a Convolutional Long Short-Term Memory recurrent neural network to model the dynamics of wildland fire propagation.
We show that ConvLSTMs can capture local fire transmission events, as well as the overall fire dynamics, such as the rate at which the fire spreads.
arXiv Detail & Related papers (2020-12-11T23:31:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.