論文の概要: Sample Complexity of Offline Distributionally Robust Linear Markov Decision Processes
- arxiv url: http://arxiv.org/abs/2403.12946v2
- Date: Thu, 27 Jun 2024 03:16:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 19:26:56.941727
- Title: Sample Complexity of Offline Distributionally Robust Linear Markov Decision Processes
- Title(参考訳): オフライン分布ロバストな線形マルコフ決定過程のサンプル複雑さ
- Authors: He Wang, Laixi Shi, Yuejie Chi,
- Abstract要約: オフライン強化学習(RL)
本稿では、オフラインデータを用いた全変動距離を特徴とする不確実性を伴う分布安定線形マルコフ決定過程(MDP)のサンプル複雑性について考察する。
我々は悲観的なモデルに基づくアルゴリズムを開発し、最小限のデータカバレッジ仮定の下でそのサンプルの複雑さを確立する。
- 参考スコア(独自算出の注目度): 37.15580574143281
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In offline reinforcement learning (RL), the absence of active exploration calls for attention on the model robustness to tackle the sim-to-real gap, where the discrepancy between the simulated and deployed environments can significantly undermine the performance of the learned policy. To endow the learned policy with robustness in a sample-efficient manner in the presence of high-dimensional state-action space, this paper considers the sample complexity of distributionally robust linear Markov decision processes (MDPs) with an uncertainty set characterized by the total variation distance using offline data. We develop a pessimistic model-based algorithm and establish its sample complexity bound under minimal data coverage assumptions, which outperforms prior art by at least $\widetilde{O}(d)$, where $d$ is the feature dimension. We further improve the performance guarantee of the proposed algorithm by incorporating a carefully-designed variance estimator.
- Abstract(参考訳): オフライン強化学習(RL)では、シミュレーション環境とデプロイ環境の相違が学習ポリシーの性能を著しく損なう可能性があるため、モデルロバスト性に注意が向けられる。
本稿では,高次元状態-作用空間の存在下での学習方針をサンプル効率で実現するために,オフラインデータを用いた全変動距離を特徴とする不確実性セットを用いて,分布的に堅牢な線形マルコフ決定過程(MDPs)のサンプル複雑性を考察する。
我々は悲観的なモデルベースアルゴリズムを開発し、そのサンプルの複雑さを最小限のデータカバレッジの仮定の下で確立し、少なくとも$\widetilde{O}(d)$で先行技術より優れており、$d$は特徴次元である。
我々は、慎重に設計された分散推定器を組み込むことにより、提案アルゴリズムの性能保証をさらに改善する。
関連論文リスト
- Distributionally Robust Reinforcement Learning with Interactive Data Collection: Fundamental Hardness and Near-Optimal Algorithm [14.517103323409307]
Sim-to-realのギャップは、トレーニングとテスト環境の相違を表している。
この課題に対処するための有望なアプローチは、分布的に堅牢なRLである。
我々は対話型データ収集によるロバストなRLに取り組み、証明可能なサンプル複雑性を保証するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-04T16:40:22Z) - Minimax Optimal and Computationally Efficient Algorithms for Distributionally Robust Offline Reinforcement Learning [6.969949986864736]
分散ロバストなオフライン強化学習(RL)は、力学の不確実性をモデル化することによって環境摂動に対する堅牢な政策訓練を求める。
関数近似を実現するために,最小限の最適化と計算効率のアルゴリズムを提案する。
その結果、ロバストなオフラインRLの関数近似は、標準のオフラインRLと本質的に異なり、おそらくは難しいことが判明した。
論文 参考訳(メタデータ) (2024-03-14T17:55:10Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - The Curious Price of Distributional Robustness in Reinforcement Learning with a Generative Model [61.87673435273466]
本稿では,強化学習(RL)におけるモデルロバスト性を検討した。
我々は,デプロイ環境が,名目MDPに規定された不確実性に陥る場合に,最悪の場合のパフォーマンスを最適化する政策を学習することを目的とした,分布的に堅牢なマルコフ決定プロセス(RMDP)の枠組みを採用する。
論文 参考訳(メタデータ) (2023-05-26T02:32:03Z) - Data-driven Piecewise Affine Decision Rules for Stochastic Programming
with Covariate Information [5.054099828483128]
非部分的決定(PADR)に埋め込まれた経験的リスク(M)手法を提案する。
提案手法は理論的整合性を持つ広範で非クラスな非制約問題に適用可能であることを示す。
論文 参考訳(メタデータ) (2023-04-26T16:08:49Z) - Distributionally Robust Model-Based Offline Reinforcement Learning with
Near-Optimal Sample Complexity [39.886149789339335]
オフライン強化学習は、積極的に探索することなく、履歴データから意思決定を行うことを学習することを目的としている。
環境の不確実性や変動性から,デプロイされた環境が,ヒストリデータセットの収集に使用される名目上のものから逸脱した場合でも,良好に機能するロバストなポリシーを学ぶことが重要である。
オフラインRLの分布的ロバストな定式化を考察し、有限水平および無限水平の両方でクルバック・リーブラー発散によって指定された不確実性セットを持つロバストマルコフ決定過程に着目する。
論文 参考訳(メタデータ) (2022-08-11T11:55:31Z) - Pessimism in the Face of Confounders: Provably Efficient Offline Reinforcement Learning in Partially Observable Markov Decision Processes [99.26864533035454]
半可観測マルコフ決定過程におけるオフライン強化学習(RL)について検討する。
本稿では,UnderlineProxy変数 underlinePessimistic UnderlinePolicy UnderlineOptimization (textttP3O)アルゴリズムを提案する。
textttP3Oは、確立されたデータセットを持つPOMDPのための証明可能な最初のオフラインRLアルゴリズムである。
論文 参考訳(メタデータ) (2022-05-26T19:13:55Z) - Pessimistic Q-Learning for Offline Reinforcement Learning: Towards
Optimal Sample Complexity [51.476337785345436]
有限水平マルコフ決定過程の文脈におけるQ-ラーニングの悲観的変種について検討する。
ほぼ最適サンプル複雑性を実現するために,分散再現型悲観的Q-ラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-02-28T15:39:36Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
ディープニューラルネットワークのような複雑なモデルによる不確実性推定は困難であり、信頼性が低い。
我々は,サポート外状態動作の値関数を正規化するモデルベースオフラインRLアルゴリズムCOMBOを開発した。
従来のオフラインモデルフリーメソッドやモデルベースメソッドと比べて、comboは一貫してパフォーマンスが良いことが分かりました。
論文 参考訳(メタデータ) (2021-02-16T18:50:32Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
経験値関数の新しい正規化器を導入し、ワッサーシュタイン分布のロバストな値関数を下限とすることを示す。
強化学習における$textitexternalな不確実性に対処するための実用的なツールとして正規化を使用することを提案する。
論文 参考訳(メタデータ) (2020-03-05T19:56:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。