論文の概要: LLMLingua-2: Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression
- arxiv url: http://arxiv.org/abs/2403.12968v2
- Date: Mon, 12 Aug 2024 04:48:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 23:38:15.640118
- Title: LLMLingua-2: Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression
- Title(参考訳): LLMLingua-2: 効率的なタスク非依存型プロンプト圧縮のためのデータ蒸留
- Authors: Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang, Qingwei Lin, Victor Rühle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, Dongmei Zhang,
- Abstract要約: 本稿では, タスク非依存のプロンプト圧縮に着目し, 一般化性と効率性の向上を図る。
我々は,プロンプト圧縮をトークン分類問題として定式化し,圧縮されたプロンプトが元のプロンプトに忠実であることを保証する。
提案手法は, XLM-RoBERTa-large や mBERT などの小型モデルを用いて圧縮目標を明示的に学習することにより,低レイテンシを実現する。
- 参考スコア(独自算出の注目度): 43.048684907893104
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper focuses on task-agnostic prompt compression for better generalizability and efficiency. Considering the redundancy in natural language, existing approaches compress prompts by removing tokens or lexical units according to their information entropy obtained from a causal language model such as LLaMa-7B. The challenge is that information entropy may be a suboptimal compression metric: (i) it only leverages unidirectional context and may fail to capture all essential information needed for prompt compression; (ii) it is not aligned with the prompt compression objective. To address these issues, we propose a data distillation procedure to derive knowledge from an LLM to compress prompts without losing crucial information, and meantime, introduce an extractive text compression dataset. We formulate prompt compression as a token classification problem to guarantee the faithfulness of the compressed prompt to the original one, and use a Transformer encoder as the base architecture to capture all essential information for prompt compression from the full bidirectional context. Our approach leads to lower latency by explicitly learning the compression objective with smaller models such as XLM-RoBERTa-large and mBERT. We evaluate our method on both in-domain and out-of-domain datasets, including MeetingBank, LongBench, ZeroScrolls, GSM8K, and BBH. Despite its small size, our model shows significant performance gains over strong baselines and demonstrates robust generalization ability across different LLMs. Additionally, our model is 3x-6x faster than existing prompt compression methods, while accelerating the end-to-end latency by 1.6x-2.9x with compression ratios of 2x-5x. Our code is available at https://aka.ms/LLMLingua-2.
- Abstract(参考訳): 本稿では, タスク非依存のプロンプト圧縮に着目し, 一般化性と効率性の向上を図る。
自然言語の冗長性を考慮すると、既存のアプローチはLLaMa-7Bのような因果的言語モデルから得られる情報エントロピーに従ってトークンや語彙単位を削除することでプロンプトを圧縮する。
課題は、情報エントロピーが最適以下の圧縮計量であるかもしれないことである。
(i)一方向の文脈のみを利用しており、即時圧縮に必要なすべての必須情報を捕捉できない場合があること。
(ii)即時圧縮目標と一致しない。
これらの課題に対処するため,LLMから知識を抽出し,重要な情報を失うことなくプロンプトを圧縮するデータ蒸留手法を提案し,その間,抽出テキスト圧縮データセットを導入する。
本稿では, プロンプト圧縮をトークン分類問題として定式化し, 圧縮したプロンプトの忠実さを元のプロンプトに保証し, トランスフォーマーエンコーダをベースアーキテクチャとして使用して, 全双方向コンテキストからプロンプト圧縮に必要なすべての情報を取得する。
提案手法は, XLM-RoBERTa-large や mBERT などの小型モデルを用いて圧縮目標を明示的に学習することにより,低レイテンシを実現する。
本手法は、FundBank、LongBench、ZeroScrolls、GSM8K、BBHを含むドメイン内および外部のデータセットで評価する。
モデルのサイズは小さいが, 強いベースラインよりも高い性能を示し, 異なるLLMに対して頑健な一般化能力を示す。
さらに,本モデルでは,圧縮比が2x-5xのエンドツーエンド遅延を1.6x-2.9xで高速化する一方,既存の高速圧縮方式よりも3x-6倍高速である。
私たちのコードはhttps://aka.ms/LLMLingua-2.comで利用可能です。
関連論文リスト
- Style-Compress: An LLM-Based Prompt Compression Framework Considering Task-Specific Styles [49.65811277223873]
Style-Compressは、より小さな言語モデルを適用して、新たなタスクでより大きなモデルのプロンプトを、追加のトレーニングなしで圧縮する軽量フレームワークである。
提案手法は,実効圧縮プロンプトを,スタイルのバリエーションやコンテキスト内学習を通じて,タスク固有の実演として反復的に生成し,選択する。
Style-Compressは、オリジナルのプロンプト再構成、テキスト要約、マルチホップQA、CoT推論の4つのタスクで2つのベースライン圧縮モデルを上回っている。
論文 参考訳(メタデータ) (2024-10-17T21:35:49Z) - TACO-RL: Task Aware Prompt Compression Optimization with Reinforcement Learning [11.167198972934736]
GPT-4のような大規模言語モデル(LLM)は、最適なパフォーマンスに必要なプロンプトのサイズが急増した。
本稿では,RLに基づくタスク認識プロンプト圧縮手法を提案する。
我々は,RL誘導圧縮法により,最先端圧縮技術よりもタスク性能が8%から260%向上することが実証された。
論文 参考訳(メタデータ) (2024-09-19T18:11:59Z) - LanguaShrink: Reducing Token Overhead with Psycholinguistics [8.123272461141815]
LanguaShrinkは、大規模言語モデルの即時圧縮フレームワークである。
本質的な情報を保持しながら、即時長を短縮する。
既存のプロンプト圧縮手法と比較して、LanguaShrinkはエンドツーエンドのレイテンシを1.43倍改善している。
論文 参考訳(メタデータ) (2024-09-01T22:09:20Z) - 500xCompressor: Generalized Prompt Compression for Large Language Models [32.4489985319054]
500xCompressorは、自然言語のコンテキストを最小1つの特別なトークンに圧縮する手法である。
あらゆるテキストを圧縮し、様々な種類の質問に答えるように設計されており、微調整を必要とせずにオリジナルの大言語モデル(LLM)によって利用することができる。
論文 参考訳(メタデータ) (2024-08-06T10:51:47Z) - Fundamental Limits of Prompt Compression: A Rate-Distortion Framework for Black-Box Language Models [21.025001473355996]
大規模言語モデル(LLM)の即時圧縮問題について定式化する。
ブラックボックスモデルのハードプロンプトを生成するトークンレベルのプロンプト圧縮手法を統合するためのフレームワークを提案する。
本稿では,現在の高速圧縮法の性能と最適戦略との間に大きなギャップがあることを述べる。
論文 参考訳(メタデータ) (2024-07-22T09:40:13Z) - Concise and Precise Context Compression for Tool-Using Language Models [60.606281074373136]
ツールを用いた言語モデルにおいて,ツール文書を簡潔かつ高精度な要約シーケンスに圧縮する2つの手法を提案する。
API-BankとAPIBenchの結果,最大16倍の圧縮率で上行ベースラインに匹敵する性能を示した。
論文 参考訳(メタデータ) (2024-07-02T08:17:00Z) - In-Context Former: Lightning-fast Compressing Context for Large Language Model [48.831304302467004]
本稿では,Transformer-based large language model (LLM) の長期入力コンテキストを圧縮する手法を提案する。
我々は,単語の埋め込みから情報を集めるために,クロスアテンション機構と少数の学習可能なダイジェストトークンを使用する。
実験の結果, 圧縮時のベースライン浮動小数点演算の1/32しか必要とせず, 処理速度を68倍から112倍に向上することがわかった。
論文 参考訳(メタデータ) (2024-06-19T15:14:55Z) - Training LLMs over Neurally Compressed Text [55.11828645767342]
本稿では,高度に圧縮されたテキスト上での大規模言語モデル(LLM)の訓練について検討する。
テキストをブロックに分割し,それぞれが同じビット長に圧縮する新しい圧縮手法であるEqual-Info Windowsを提案する。
提案手法は, 大規模化により向上し, パープレキシティと推論速度のベンチマークにおいて, バイトレベルのベースラインをはるかに上回る, ニューラルネットワークによる効果的な学習を実演する。
論文 参考訳(メタデータ) (2024-04-04T17:48:28Z) - Long Context Compression with Activation Beacon [22.054232261437186]
Activation Beaconは、トランスフォーマーベースのLLM用のプラグインモジュールである。
長いコンテキストの効率的な、効率的、柔軟な圧縮をターゲットとしている。
推論時間の2倍の高速化と、KVキャッシュのメモリコストの8倍の削減を実現している。
論文 参考訳(メタデータ) (2024-01-07T11:57:40Z) - Compress, Then Prompt: Improving Accuracy-Efficiency Trade-off of LLM
Inference with Transferable Prompt [96.24800696597707]
圧縮モデルにより,このトレードオフを最適化する新たな視点を導入する。
本稿では,圧縮されたモデルを学習プロセスに公開するソフトプロンプト学習法を提案する。
我々のソフトプロンプト戦略は8x圧縮LLaMA-7Bモデルの性能を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-05-17T20:45:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。