論文の概要: ICPC: In-context Prompt Compression with Faster Inference
- arxiv url: http://arxiv.org/abs/2501.01625v1
- Date: Fri, 03 Jan 2025 03:46:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-06 15:12:32.987314
- Title: ICPC: In-context Prompt Compression with Faster Inference
- Title(参考訳): ICPC:より高速な推論によるコンテキスト内プロンプト圧縮
- Authors: Ziyang Yu, Yuyu Liu,
- Abstract要約: I CPC(In-context Prompt Compression)は,新規かつスケーラブルなプロンプト圧縮手法であり,プロンプト長を適応的に削減する。
I CPCの鍵となる考え方は、エンコーダを用いてプロンプトに現れる各単語の確率を計算し、情報関数を介して各単語が持つ情報を計算することである。
実験により、I CPCは、異なるカテゴリの長いテキストを効果的に圧縮し、異なるタイプのNLPタスクにおいてより優れた性能と速度を実現することができることを示した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Despite the recent success of Large Language Models (LLMs), it remains challenging to feed LLMs with long prompts due to the fixed size of LLM inputs. As a remedy, prompt compression becomes a promising solution by removing redundant tokens in the prompt. However, using LLM in the existing works requires additional computation resources and leads to memory overheads. To address it, we propose ICPC (In-context Prompt Compression), a novel and scalable prompt compression method that adaptively reduces the prompt length. The key idea of ICPC is to calculate the probability of each word appearing in the prompt using encoders and calculate information carried by each word through the information function, which effectively reduces the information loss during prompt compression and increases the speed of compression. Empirically, we demonstrate that ICPC can effectively compress long texts of different categories and thus achieve better performance and speed on different types of NLP tasks.
- Abstract(参考訳): 近年のLarge Language Models (LLMs)の成功にもかかわらず、LLM入力の固定サイズのため、長いプロンプトでLLMを供給することは依然として困難である。
対策として、プロンプト内の冗長なトークンを削除することで、プロンプト圧縮が有望な解決策となる。
しかし、LLMを既存の作業で使用するには、さらなる計算リソースが必要で、メモリオーバーヘッドにつながる。
そこで我々はICPC(In-context Prompt Compression)を提案する。
ICPCの鍵となる考え方は、エンコーダを用いてプロンプトに現れる各単語の確率を計算し、情報機能を介して各単語が持つ情報を計算することで、プロンプト圧縮時の情報損失を効果的に低減し、圧縮速度を向上させることである。
実験により、ICPCは、異なるカテゴリの長いテキストを効果的に圧縮し、異なるタイプのNLPタスクにおいてより優れた性能と速度を実現することができることを示した。
関連論文リスト
- Efficient Long Context Language Model Retrieval with Compression [57.09163579304332]
情報検索のための新しいパラダイムとしてLong Context Language Models (LCLM)が登場した。
本稿では,LCLM検索に適した新しい圧縮手法を提案する。
また,CoLoRはテキスト内サイズを1.91倍に圧縮し,検索性能を6%向上することを示した。
論文 参考訳(メタデータ) (2024-12-24T07:30:55Z) - From Reading to Compressing: Exploring the Multi-document Reader for Prompt Compression [9.5823848981136]
大規模言語モデル(LLM)は、高度なプロンプト技術を用いて、大幅な性能向上を実現している。
プロンプト圧縮はこれらの問題を緩和するために提案されているが、グローバルコンテキストを捕捉し、圧縮機を効果的に訓練する際の課題に直面している。
論文 参考訳(メタデータ) (2024-10-05T12:27:47Z) - Prompt Compression with Context-Aware Sentence Encoding for Fast and Improved LLM Inference [16.830389144259584]
文レベルのプロンプト圧縮技術である文脈対応プロンプト圧縮(CPC)を提案する。
鍵となる革新は、与えられた質問に対する各文の関連スコアを提供する新しい文脈対応の文エンコーダである。
提案手法は,ベンチマークデータセットの高速圧縮に関する先行研究をかなり上回っている。
論文 参考訳(メタデータ) (2024-09-02T13:02:51Z) - LanguaShrink: Reducing Token Overhead with Psycholinguistics [8.123272461141815]
LanguaShrinkは、大規模言語モデルの即時圧縮フレームワークである。
本質的な情報を保持しながら、即時長を短縮する。
既存のプロンプト圧縮手法と比較して、LanguaShrinkはエンドツーエンドのレイテンシを1.43倍改善している。
論文 参考訳(メタデータ) (2024-09-01T22:09:20Z) - In-Context Former: Lightning-fast Compressing Context for Large Language Model [48.831304302467004]
本稿では,Transformer-based large language model (LLM) の長期入力コンテキストを圧縮する手法を提案する。
我々は,単語の埋め込みから情報を集めるために,クロスアテンション機構と少数の学習可能なダイジェストトークンを使用する。
実験の結果, 圧縮時のベースライン浮動小数点演算の1/32しか必要とせず, 処理速度を68倍から112倍に向上することがわかった。
論文 参考訳(メタデータ) (2024-06-19T15:14:55Z) - Training LLMs over Neurally Compressed Text [55.11828645767342]
本稿では,高度に圧縮されたテキスト上での大規模言語モデル(LLM)の訓練について検討する。
テキストをブロックに分割し,それぞれが同じビット長に圧縮する新しい圧縮手法であるEqual-Info Windowsを提案する。
提案手法は, 大規模化により向上し, パープレキシティと推論速度のベンチマークにおいて, バイトレベルのベースラインをはるかに上回る, ニューラルネットワークによる効果的な学習を実演する。
論文 参考訳(メタデータ) (2024-04-04T17:48:28Z) - LLMLingua-2: Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression [43.048684907893104]
本稿では, タスク非依存のプロンプト圧縮に着目し, 一般化性と効率性の向上を図る。
我々は,プロンプト圧縮をトークン分類問題として定式化し,圧縮されたプロンプトが元のプロンプトに忠実であることを保証する。
提案手法は, XLM-RoBERTa-large や mBERT などの小型モデルを用いて圧縮目標を明示的に学習することにより,低レイテンシを実現する。
論文 参考訳(メタデータ) (2024-03-19T17:59:56Z) - Learning to Compress Prompt in Natural Language Formats [54.06967020905763]
大規模言語モデル(LLM)は、複数の自然言語処理タスクを処理するのに優れている。
LLMは、長いコンテキスト、遅い推論速度、高い計算コストによる性能の低下によって制約される。
本研究の目的は、LLM転送性を備えた自然言語形式で長いプロンプトを圧縮することである。
論文 参考訳(メタデータ) (2024-02-28T20:41:21Z) - Compressing LLMs: The Truth is Rarely Pure and Never Simple [90.05366363633568]
Knowledge-Intensive Compressed LLM BenchmarKは、圧縮された大言語モデルの評価プロトコルを再定義することを目的としている。
LLM-KICKは、現在のSoTA圧縮方式の多くの有利な利点と不運な点を明らかにしている。
LLM-KICKは、言語理解、推論、生成、テキスト内検索、テキスト内要約などのための圧縮LLMの能力に一様にアクセスできるように設計されている。
論文 参考訳(メタデータ) (2023-10-02T17:42:37Z) - Discrete Prompt Compression with Reinforcement Learning [2.664293070994717]
Compressed prompts aid instruction-tuned language model (LM) inovercoming context window limit and reduce computational cost。
既存のメソッドは、主にトレーニングの埋め込みに基づいているが、解釈可能性、埋め込みトークンの固定数、異なるLM間の再利用性、ブラックボックスAPIとのインタラクションにおける適用性など、さまざまな課題に直面している。
本研究では,これらの問題に対処する離散的プロンプト圧縮法であるPCRLを用いた即時圧縮を提案する。
論文 参考訳(メタデータ) (2023-08-17T03:10:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。