AltGraph: Redesigning Quantum Circuits Using Generative Graph Models for Efficient Optimization
- URL: http://arxiv.org/abs/2403.12979v2
- Date: Thu, 21 Mar 2024 18:52:20 GMT
- Title: AltGraph: Redesigning Quantum Circuits Using Generative Graph Models for Efficient Optimization
- Authors: Collin Beaudoin, Koustubh Phalak, Swaroop Ghosh,
- Abstract summary: AltGraph is a novel search-based circuit transformation approach.
It generates equivalent quantum circuits using existing generative graph models.
It achieves on average a 37.55% reduction in the number of gates and a 37.75% reduction in the circuit depth post-transpiling.
- Score: 2.089191490381739
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum circuit transformation aims to produce equivalent circuits while optimizing for various aspects such as circuit depth, gate count, and compatibility with modern Noisy Intermediate Scale Quantum (NISQ) devices. There are two techniques for circuit transformation. The first is a rule-based approach that greedily cancels out pairs of gates that equate to the identity unitary operation. Rule-based approaches are used in quantum compilers such as Qiskit, tket, and Quilc. The second is a search-based approach that tries to find an equivalent quantum circuit by exploring the quantum circuits search space. Search-based approaches typically rely on machine learning techniques such as generative models and Reinforcement Learning (RL). In this work, we propose AltGraph, a novel search-based circuit transformation approach that generates equivalent quantum circuits using existing generative graph models. We use three main graph models: DAG Variational Autoencoder (D-VAE) with two variants: Gated Recurrent Unit (GRU) and Graph Convolutional Network (GCN), and Deep Generative Model for Graphs (DeepGMG) that take a Direct Acyclic Graph (DAG) of the quantum circuit as input and output a new DAG from which we reconstruct the equivalent quantum circuit. Next, we perturb the latent space to generate equivalent quantum circuits some of which may be more compatible with the hardware coupling map and/or enable better optimization leading to reduced gate count and circuit depth. AltGraph achieves on average a 37.55% reduction in the number of gates and a 37.75% reduction in the circuit depth post-transpiling compared to the original transpiled circuit with only 0.0074 Mean Squared Error (MSE) in the density matrix.
Related papers
- A two-circuit approach to reducing quantum resources for the quantum lattice Boltzmann method [41.66129197681683]
Current quantum algorithms for solving CFD problems use a single quantum circuit and, in some cases, lattice-based methods.
We introduce the a novel multiple circuits algorithm that makes use of a quantum lattice Boltzmann method (QLBM)
The problem is cast as a stream function--vorticity formulation of the 2D Navier-Stokes equations and verified and tested on a 2D lid-driven cavity flow.
arXiv Detail & Related papers (2024-01-20T15:32:01Z) - Quantum circuit synthesis via a random combinatorial search [0.0]
We use a random search technique to find quantum gate sequences that implement perfect quantum state preparation or unitary operator synthesis with arbitrary targets.
We show that the fraction of perfect-fidelity quantum circuits increases rapidly as soon as the circuit size exceeds the minimum circuit size required for achieving unit fidelity.
arXiv Detail & Related papers (2023-11-29T00:59:29Z) - CktGNN: Circuit Graph Neural Network for Electronic Design Automation [67.29634073660239]
This paper presents a Circuit Graph Neural Network (CktGNN) that simultaneously automates the circuit topology generation and device sizing.
We introduce Open Circuit Benchmark (OCB), an open-sourced dataset that contains $10$K distinct operational amplifiers.
Our work paves the way toward a learning-based open-sourced design automation for analog circuits.
arXiv Detail & Related papers (2023-08-31T02:20:25Z) - Graph Neural Network Autoencoders for Efficient Quantum Circuit
Optimisation [69.43216268165402]
We present for the first time how to use graph neural network (GNN) autoencoders for the optimisation of quantum circuits.
We construct directed acyclic graphs from the quantum circuits, encode the graphs and use the encodings to represent RL states.
Our method is the first realistic first step towards very large scale RL quantum circuit optimisation.
arXiv Detail & Related papers (2023-03-06T16:51:30Z) - Quantum Fourier Addition, Simplified to Toffoli Addition [92.18777020401484]
We present the first systematic translation of the QFT-addition circuit into a Toffoli-based adder.
Instead of using approximate decompositions of the gates from the QFT circuit, it is more efficient to merge gates.
arXiv Detail & Related papers (2022-09-30T02:36:42Z) - Applications of Universal Parity Quantum Computation [0.0]
We demonstrate the applicability of a universal gate set in the parity encoding, which is a dual to the standard gate model.
Embedding these algorithms in the parity encoding reduces the circuit depth compared to conventional gate-based implementations.
We propose simple implementations of multiqubit gates in tailored encodings and an efficient strategy to prepare graph states.
arXiv Detail & Related papers (2022-05-19T12:31:46Z) - Quantum Gate Pattern Recognition and Circuit Optimization for Scientific
Applications [1.6329956884407544]
We introduce two ideas for circuit optimization and combine them in a multi-tiered quantum circuit optimization protocol called AQCEL.
AQCEL is deployed on an iterative and efficient quantum algorithm designed to model final state radiation in high energy physics.
Our technique is generic and can be useful for a wide variety of quantum algorithms.
arXiv Detail & Related papers (2021-02-19T16:20:31Z) - Machine Learning Optimization of Quantum Circuit Layouts [63.55764634492974]
We introduce a quantum circuit mapping, QXX, and its machine learning version, QXX-MLP.
The latter infers automatically the optimal QXX parameter values such that the layed out circuit has a reduced depth.
We present empiric evidence for the feasibility of learning the layout method using approximation.
arXiv Detail & Related papers (2020-07-29T05:26:19Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z) - MoG-VQE: Multiobjective genetic variational quantum eigensolver [0.0]
Variational quantum eigensolver (VQE) emerged as a first practical algorithm for near-term quantum computers.
Here, we propose the approach which can combine both low depth and improved precision.
We observe nearly ten-fold reduction in the two-qubit gate counts as compared to the standard hardware-efficient ansatz.
arXiv Detail & Related papers (2020-07-08T20:44:50Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.