論文の概要: Elevating Software Quality in Agile Environments: The Role of Testing Professionals in Unit Testing
- arxiv url: http://arxiv.org/abs/2403.13220v1
- Date: Wed, 20 Mar 2024 00:41:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 18:27:31.902724
- Title: Elevating Software Quality in Agile Environments: The Role of Testing Professionals in Unit Testing
- Title(参考訳): アジャイル環境でのソフトウェア品質を高める: 単体テストにおけるテスト専門家の役割
- Authors: Lucas Neves, Oscar Campos, Robson Santos, Italo Santos, Cleyton Magalhaes, Ronnie de Souza Santos,
- Abstract要約: テストはソフトウェア開発プロセスにおいて不可欠な品質活動です。
本報告では, 産業環境での単体テストにおけるテストエンジニアの関与について考察する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Testing is an essential quality activity in the software development process. Usually, a software system is tested on several levels, starting with unit testing that checks the smallest parts of the code until acceptance testing, which is focused on the validations with the end-user. Historically, unit testing has been the domain of developers, who are responsible for ensuring the accuracy of their code. However, in agile environments, testing professionals play an integral role in various quality improvement initiatives throughout each development cycle. This paper explores the participation of test engineers in unit testing within an industrial context, employing a survey-based research methodology. Our findings demonstrate that testing professionals have the potential to strengthen unit testing by collaborating with developers to craft thorough test cases and fostering a culture of mutual learning and cooperation, ultimately contributing to increasing the overall quality of software projects.
- Abstract(参考訳): テストはソフトウェア開発プロセスにおいて不可欠な品質活動です。
通常、ソフトウェアシステムはいくつかのレベルでテストされます。まず、受け入れテストまでコードの最小部分をチェックする単体テストから始まり、エンドユーザーによる検証に焦点を当てます。
歴史的に、ユニットテストはコードの正確性を保証する責任を負う開発者の領域でした。
しかしながら、アジャイル環境では、テスト専門家は開発サイクル毎に様々な品質改善イニシアチブで重要な役割を果たす。
本稿では, 調査に基づく研究手法を用いて, 産業環境での単体テストへのテストエンジニアの参加について検討する。
我々の研究結果は,テスト専門家が開発者と協力して徹底的なテストケースを構築し,相互学習と協力の文化を育み,最終的にソフトウェアプロジェクトの全体的な品質向上に寄与することで,単体テストを強化する可能性を示唆している。
関連論文リスト
- Disrupting Test Development with AI Assistants [1.024113475677323]
GitHub Copilot、ChatGPT、TabnineなどのジェネレーティブAI支援コーディングツールは、ソフトウェア開発を大きく変えた。
本稿では、これらのイノベーションが生産性とソフトウェア開発のメトリクスにどのように影響するかを分析する。
論文 参考訳(メタデータ) (2024-11-04T17:52:40Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
Code-Development Benchmark (Codev-Bench)は、細粒度で現実世界、リポジトリレベル、開発者中心の評価フレームワークです。
Codev-Agentは、リポジトリのクローリングを自動化し、実行環境を構築し、既存のユニットテストから動的呼び出しチェーンを抽出し、データ漏洩を避けるために新しいテストサンプルを生成するエージェントベースのシステムである。
論文 参考訳(メタデータ) (2024-10-02T09:11:10Z) - Multi-language Unit Test Generation using LLMs [6.259245181881262]
静的解析を組み込んだジェネリックパイプラインを記述し,コンパイル可能な高カバレッジテストケースの生成においてLCMをガイドする。
パイプラインをさまざまなプログラミング言語、特にJavaとPython、そして環境モックを必要とする複雑なソフトウェアに適用する方法を示します。
以上の結果から,静的解析によって導かれるLCMベースのテスト生成は,最新のテスト生成技術と競合し,さらに性能も向上することが示された。
論文 参考訳(メタデータ) (2024-09-04T21:46:18Z) - Which Combination of Test Metrics Can Predict Success of a Software Project? A Case Study in a Year-Long Project Course [1.553083901660282]
テストはソフトウェア開発プロジェクトの成功を保証する上で重要な役割を担います。
種々のテストが機能的適合性に与える影響を定量化できるかどうかを検討する。
論文 参考訳(メタデータ) (2024-08-22T04:23:51Z) - A System for Automated Unit Test Generation Using Large Language Models and Assessment of Generated Test Suites [1.4563527353943984]
大規模言語モデル(LLM)はソフトウェア開発の様々な側面に適用されている。
Javaプロジェクトのテストスイートを生成する自動化システムであるAgoneTestを紹介します。
論文 参考訳(メタデータ) (2024-08-14T23:02:16Z) - Leveraging Large Language Models for Efficient Failure Analysis in Game Development [47.618236610219554]
本稿では,テストの失敗の原因となるコードの変更を自動的に識別する手法を提案する。
このメソッドは、LLM(Large Language Models)を利用して、エラーメッセージと対応するコード変更を関連付ける。
当社のアプローチは新たに作成したデータセットで71%の精度に達しています。
論文 参考訳(メタデータ) (2024-06-11T09:21:50Z) - DevBench: A Comprehensive Benchmark for Software Development [72.24266814625685]
DevBenchは、ソフトウェア開発ライフサイクルのさまざまな段階にわたる大規模言語モデル(LLM)を評価するベンチマークである。
GPT-4-Turboを含む現在のLLMは、DevBench内での課題の解決に失敗している。
本研究は,LLMを現実のプログラミングアプリケーションに展開する上で,現実的な知見を提供するものである。
論文 参考訳(メタデータ) (2024-03-13T15:13:44Z) - Observation-based unit test generation at Meta [52.4716552057909]
TestGenは、アプリケーション実行中に観察された複雑なオブジェクトのシリアライズされた観察から作られたユニットテストを自動的に生成する。
TestGenは518のテストを本番環境に投入し、継続的統合で9,617,349回実行され、5,702の障害が見つかった。
評価の結果,信頼性の高い4,361のエンドツーエンドテストから,少なくとも86%のクラスでテストを生成することができた。
論文 参考訳(メタデータ) (2024-02-09T00:34:39Z) - Software Testing and Code Refactoring: A Survey with Practitioners [3.977213079821398]
本研究の目的は,ソフトウェアテストのコンテキストにおいて,このプラクティスのメリットと限界を理解するために,ソフトウェアテスト専門家がコードを扱う方法を検討することである。
ソフトウェアテストの文脈では、自動テストのメンテナンスのサポートや、テストチームのパフォーマンス向上など、いくつかのメリットがある、と私たちは結論付けました。
本研究は,テスト専門家が自動テストのコードに実装することの重要性について議論し,コーディング能力の向上を可能にするものである。
論文 参考訳(メタデータ) (2023-10-03T01:07:39Z) - SUPERNOVA: Automating Test Selection and Defect Prevention in AAA Video
Games Using Risk Based Testing and Machine Learning [62.997667081978825]
従来の手法では、成長するソフトウェアシステムではスケールできないため、ビデオゲームのテストはますます難しいタスクになります。
自動化ハブとして機能しながら,テスト選択と欠陥防止を行うシステム SUPERNOVA を提案する。
この直接的な影響は、未公表のスポーツゲームタイトルの55%以上のテスト時間を減らすことが観察されている。
論文 参考訳(メタデータ) (2022-03-10T00:47:46Z) - Beyond Accuracy: Behavioral Testing of NLP models with CheckList [66.42971817954806]
CheckList は NLP モデルをテストするためのタスクに依存しない方法論である。
CheckListには、包括的なテストのアイデアを促進する一般的な言語機能とテストタイプのマトリックスが含まれている。
ユーザスタディでは、CheckListのNLP実践者が2倍の数のテストを作成し、それのないユーザの約3倍のバグを発見しました。
論文 参考訳(メタデータ) (2020-05-08T15:48:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。