論文の概要: Community Needs and Assets: A Computational Analysis of Community Conversations
- arxiv url: http://arxiv.org/abs/2403.13272v1
- Date: Wed, 20 Mar 2024 03:14:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 18:07:57.657812
- Title: Community Needs and Assets: A Computational Analysis of Community Conversations
- Title(参考訳): コミュニティニーズとアセット:コミュニティ会話の計算分析
- Authors: Md Towhidul Absar Chowdhury, Naveen Sharma, Ashiqur R. KhudaBukhsh,
- Abstract要約: Redditから3,511の会話からなるコミュニティのニーズと資産に関する最初のデータセットを紹介します。
このデータセットを用いて、感情分類と一般的な大言語モデルと比較して、発話レベルの分類モデルを評価する。
ニーズに関する会話には否定的な感情と感情があり、資産に関する会話は場所と実体に焦点を当てている。
- 参考スコア(独自算出の注目度): 11.456416081243654
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A community needs assessment is a tool used by non-profits and government agencies to quantify the strengths and issues of a community, allowing them to allocate their resources better. Such approaches are transitioning towards leveraging social media conversations to analyze the needs of communities and the assets already present within them. However, manual analysis of exponentially increasing social media conversations is challenging. There is a gap in the present literature in computationally analyzing how community members discuss the strengths and needs of the community. To address this gap, we introduce the task of identifying, extracting, and categorizing community needs and assets from conversational data using sophisticated natural language processing methods. To facilitate this task, we introduce the first dataset about community needs and assets consisting of 3,511 conversations from Reddit, annotated using crowdsourced workers. Using this dataset, we evaluate an utterance-level classification model compared to sentiment classification and a popular large language model (in a zero-shot setting), where we find that our model outperforms both baselines at an F1 score of 94% compared to 49% and 61% respectively. Furthermore, we observe through our study that conversations about needs have negative sentiments and emotions, while conversations about assets focus on location and entities. The dataset is available at https://github.com/towhidabsar/CommunityNeeds.
- Abstract(参考訳): コミュニティ・アセスメント(Community needs Assessment)とは、非営利団体や政府機関が、コミュニティの強みや課題を定量化し、彼らのリソースをよりよく割り当てるためのツールである。
このようなアプローチは、ソーシャルメディアの会話を活用して、コミュニティやその中にすでに存在している資産のニーズを分析する方向に移行している。
しかし、指数関数的に増大するソーシャルメディアの会話を手動で分析することは困難である。
コミュニティメンバがコミュニティの強みやニーズについてどのように議論するかを計算的に分析する上で、現在の文献にはギャップがある。
このギャップに対処するために、我々は、洗練された自然言語処理手法を用いて、会話データからコミュニティのニーズと資産を特定し、抽出し、分類するタスクを導入する。
この作業を円滑にするために,Redditから3,511件の会話をクラウドソースの作業員にアノテートした,コミュニティのニーズと資産に関する最初のデータセットを紹介した。
このデータセットを用いて、感情分類と一般的な大言語モデル(ゼロショット設定)と比較して、発話レベルの分類モデルを評価する。
さらに、我々の研究を通して、ニーズに関する会話には否定的な感情と感情があり、資産に関する会話は場所と実体に焦点を当てている。
データセットはhttps://github.com/towhidabsar/CommunityNeeds.comで公開されている。
関連論文リスト
- Building Better: Avoiding Pitfalls in Developing Language Resources when Data is Scarce [27.918975040084387]
与えられた言語のデータは、トークンの集まり以上のものと見なすべきである。
優れたデータ収集とラベル付けのプラクティスは、より人間中心で社会的に意識した技術を構築する上で鍵となる。
論文 参考訳(メタデータ) (2024-10-16T15:51:18Z) - Social Intelligence Data Infrastructure: Structuring the Present and Navigating the Future [59.78608958395464]
私たちは、包括的な社会AI分類と480のNLPデータセットからなるデータライブラリで構成される、ソーシャルAIデータインフラストラクチャを構築しています。
インフラストラクチャにより、既存のデータセットの取り組みを分析し、異なるソーシャルインテリジェンスの観点から言語モデルのパフォーマンスを評価することができます。
多面的なデータセットの必要性、言語と文化の多様性の向上、より長期にわたる社会的状況、そして将来のソーシャルインテリジェンスデータ活動におけるよりインタラクティブなデータの必要性が示されている。
論文 参考訳(メタデータ) (2024-02-28T00:22:42Z) - Detecting value-expressive text posts in Russian social media [0.0]
我々は、ロシアのソーシャルメディアVKontakteで価値表現ポストを正確に検出できるモデルを見つけることを目指していた。
5,035ポストのトレーニングデータセットは、3人の専門家、304人のクラウドワーカー、ChatGPTによって注釈付けされた。
ChatGPTはより一貫性があったが、スパム検出に苦労した。
論文 参考訳(メタデータ) (2023-12-14T14:18:27Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - ValueNet: A New Dataset for Human Value Driven Dialogue System [103.2044265617704]
本稿では,21,374のテキストシナリオに対する人間の態度を含む,ValueNetという大規模人的価値データセットを提案する。
総合的な経験的結果は、学習された価値モデルが幅広い対話作業に有用であることを示している。
ValueNetは、人間の価値モデリングのための最初の大規模テキストデータセットである。
論文 参考訳(メタデータ) (2021-12-12T23:02:52Z) - Author Clustering and Topic Estimation for Short Texts [69.54017251622211]
同じ文書中の単語間の強い依存をモデル化することにより、遅延ディリクレ割当を拡張できる新しいモデルを提案する。
同時にユーザをクラスタ化し、ホック後のクラスタ推定の必要性を排除しています。
我々の手法は、短文で生じる問題に対する従来のアプローチよりも、-または----------- で機能する。
論文 参考訳(メタデータ) (2021-06-15T20:55:55Z) - Can You be More Social? Injecting Politeness and Positivity into
Task-Oriented Conversational Agents [60.27066549589362]
人間エージェントが使用する社会言語は、ユーザーの応答性の向上とタスク完了に関連しています。
このモデルは、ソーシャル言語理解要素で拡張されたシーケンスからシーケンスまでのディープラーニングアーキテクチャを使用する。
人的判断と自動言語尺度の両方を用いたコンテンツ保存と社会言語レベルの評価は,エージェントがより社会的に適切な方法でユーザの問題に対処できる応答を生成できることを示している。
論文 参考訳(メタデータ) (2020-12-29T08:22:48Z) - Discovering and Categorising Language Biases in Reddit [5.670038395203354]
本稿では,Reddit上のオンライン談話コミュニティの語彙に符号化された言語バイアスを自動的に検出するデータ駆動型手法を提案する。
単語埋め込みを用いて、テキストを高次元の高密度ベクトルに変換し、単語間の意味的関係をキャプチャする。
さまざまなRedditコミュニティにおいて、ジェンダーバイアス、宗教バイアス、民族バイアスの発見に成功しました。
論文 参考訳(メタデータ) (2020-08-06T16:42:10Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
本稿では,既存の深層学習に基づくソーシャルインタラクションのモデル化手法について詳細に分析する。
本稿では、これらの社会的相互作用を効果的に捉えるための知識に基づく2つのデータ駆動手法を提案する。
我々は,人間の軌道予測分野において,重要かつ欠落したコンポーネントであるTrajNet++を大規模に開発する。
論文 参考訳(メタデータ) (2020-07-07T17:19:56Z) - A Framework for Pre-processing of Social Media Feeds based on Integrated
Local Knowledge Base [1.5749416770494706]
本稿では,ソーシャルメディアフィードの事前処理によるパフォーマンス向上のためのフレームワークを提案する。
このフレームワークは、標準化されたデータセットで94.07%、ツイートから感情を抽出する際には、局所化されたデータセットで99.78%の精度を持っていた。
論文 参考訳(メタデータ) (2020-06-29T07:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。