論文の概要: SCRAG: Social Computing-Based Retrieval Augmented Generation for Community Response Forecasting in Social Media Environments
- arxiv url: http://arxiv.org/abs/2504.16947v1
- Date: Fri, 18 Apr 2025 15:02:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.093552
- Title: SCRAG: Social Computing-Based Retrieval Augmented Generation for Community Response Forecasting in Social Media Environments
- Title(参考訳): SCRAG:ソーシャルメディア環境におけるコミュニティ応答予測のためのソーシャル・コンピューティングに基づく検索型検索生成
- Authors: Dachun Sun, You Lyu, Jinning Li, Yizhuo Chen, Tianshi Wang, Tomoyoshi Kimura, Tarek Abdelzaher,
- Abstract要約: SCRAGは、ソーシャルコンピューティングにインスパイアされた予測フレームワークである。
リアルまたは仮説的なソーシャルメディア投稿に対するコミュニティの反応を予測する。
公開関係の専門家が意図しない誤解を避ける方法でメッセージを作成するために使用することができる。
- 参考スコア(独自算出の注目度): 8.743208265682014
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces SCRAG, a prediction framework inspired by social computing, designed to forecast community responses to real or hypothetical social media posts. SCRAG can be used by public relations specialists (e.g., to craft messaging in ways that avoid unintended misinterpretations) or public figures and influencers (e.g., to anticipate social responses), among other applications related to public sentiment prediction, crisis management, and social what-if analysis. While large language models (LLMs) have achieved remarkable success in generating coherent and contextually rich text, their reliance on static training data and susceptibility to hallucinations limit their effectiveness at response forecasting in dynamic social media environments. SCRAG overcomes these challenges by integrating LLMs with a Retrieval-Augmented Generation (RAG) technique rooted in social computing. Specifically, our framework retrieves (i) historical responses from the target community to capture their ideological, semantic, and emotional makeup, and (ii) external knowledge from sources such as news articles to inject time-sensitive context. This information is then jointly used to forecast the responses of the target community to new posts or narratives. Extensive experiments across six scenarios on the X platform (formerly Twitter), tested with various embedding models and LLMs, demonstrate over 10% improvements on average in key evaluation metrics. A concrete example further shows its effectiveness in capturing diverse ideologies and nuances. Our work provides a social computing tool for applications where accurate and concrete insights into community responses are crucial.
- Abstract(参考訳): 本稿では,ソーシャル・コンピューティングにインスパイアされた予測フレームワークであるSCRAGを紹介する。
SCRAGは、公的な関係の専門家(例えば、意図しない誤解を避けるためにメッセージングを作る)や、公共の人物やインフルエンサー(例えば、社会的反応を予想する)によって使われる。
大規模言語モデル(LLM)は、一貫性があり、文脈的にリッチなテキストを生成することに成功しているが、静的トレーニングデータへの依存と幻覚への感受性は、動的ソーシャルメディア環境における応答予測における有効性を制限している。
SCRAGは、LLMとソーシャルコンピューティングに根ざしたRAG(Retrieval-Augmented Generation)技術を統合することで、これらの課題を克服している。
特に我々のフレームワークは
一 そのイデオロギー的・意味的・感情的な構成を捉えようとする地域社会の歴史的反応
二 ニュース記事等の情報源からの外部知識を用いて、時間に敏感な文脈を注入すること。
この情報は、新たな投稿や物語に対するターゲットコミュニティの反応を予測するために共同で使用される。
Xプラットフォーム(以前のTwitter)上の6つのシナリオにわたる大規模な実験は、様々な埋め込みモデルとLLMでテストされ、主要な評価指標の平均で10%以上の改善が示されている。
具体的な例は、多様なイデオロギーとニュアンスをキャプチャする効果を示している。
私たちの研究は、コミュニティの反応に対する正確で具体的な洞察が不可欠であるアプリケーションのための、ソーシャルコンピューティングツールを提供しています。
関連論文リスト
- Large Language Model Driven Agents for Simulating Echo Chamber Formation [5.6488384323017]
ソーシャルメディアプラットフォームにおけるエコーチャンバーの台頭は、分極と既存の信念の強化に対する懸念を高めている。
エコーチャンバーの形成をシミュレーションするための従来の手法は、しばしば事前定義された規則や数値シミュレーションに依存してきた。
本稿では,大言語モデル(LLM)を生成エージェントとして活用し,エコーチャンバー力学をシミュレートする新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-25T12:05:11Z) - Can LLMs Simulate Social Media Engagement? A Study on Action-Guided Response Generation [51.44040615856536]
本稿では、行動誘導応答生成によるソーシャルメディアのエンゲージメントをシミュレートする大規模言語モデルの能力について分析する。
GPT-4o-mini,O1-mini,DeepSeek-R1をソーシャルメディアエンゲージメントシミュレーションで評価した。
論文 参考訳(メタデータ) (2025-02-17T17:43:08Z) - SocialBench: Sociality Evaluation of Role-Playing Conversational Agents [85.6641890712617]
大規模言語モデル(LLM)は、様々なAI対話エージェントの開発を進めてきた。
SocialBenchは、ロールプレイングの会話エージェントの社会的性を個人レベルとグループレベルで評価するために設計された最初のベンチマークである。
個人レベルで優れたエージェントは,集団レベルでの熟練度を示唆しない。
論文 参考訳(メタデータ) (2024-03-20T15:38:36Z) - Modeling Political Orientation of Social Media Posts: An Extended
Analysis [0.0]
オンラインソーシャルメディア上で政治的分極を特徴付ける機械学習モデルを開発することは、大きな課題である。
これらの課題は主に、注釈付きデータの欠如、ソーシャルメディアデータセットにおけるノイズの存在、膨大な量のデータなど、さまざまな要因に起因している。
本稿では、ソーシャルメディア投稿のラベル付けに、メディアバイアスと投稿コンテンツを活用する2つの方法を紹介する。
ソーシャルメディア投稿の政治的指向を予測することで,現在の機械学習モデルの性能向上を実証する。
論文 参考訳(メタデータ) (2023-11-21T03:34:20Z) - Countering Misinformation via Emotional Response Generation [15.383062216223971]
ソーシャルメディアプラットフォーム(SMP)における誤情報拡散は、公衆衛生、社会的結束、民主主義に重大な危険をもたらす。
これまでの研究では、社会的訂正が誤情報を抑制する効果的な方法であることが示された。
約1万のクレーム応答対からなる最初の大規模データセットであるVerMouthを提案する。
論文 参考訳(メタデータ) (2023-11-17T15:37:18Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSenseは、既存のソーシャルネットワーク上に信念中心のグラフを誘導するフレームワークであり、グラフベースの伝播によって社会的ダイナミクスを捉える。
本手法は,ゼロショット設定と教師あり設定の両方に対する実験的な評価において,既存の最先端技術を超えている。
論文 参考訳(メタデータ) (2023-10-20T06:17:02Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Measuring the Effect of Influential Messages on Varying Personas [67.1149173905004]
我々は、ニュースメッセージを見る際にペルソナが持つ可能性のある応答を推定するために、ニュースメディア向けのペルソナに対するレスポンス予測という新しいタスクを提示する。
提案課題は,モデルにパーソナライズを導入するだけでなく,各応答の感情極性と強度も予測する。
これにより、ペルソナの精神状態に関するより正確で包括的な推測が可能になる。
論文 参考訳(メタデータ) (2023-05-25T21:01:00Z) - Can You be More Social? Injecting Politeness and Positivity into
Task-Oriented Conversational Agents [60.27066549589362]
人間エージェントが使用する社会言語は、ユーザーの応答性の向上とタスク完了に関連しています。
このモデルは、ソーシャル言語理解要素で拡張されたシーケンスからシーケンスまでのディープラーニングアーキテクチャを使用する。
人的判断と自動言語尺度の両方を用いたコンテンツ保存と社会言語レベルの評価は,エージェントがより社会的に適切な方法でユーザの問題に対処できる応答を生成できることを示している。
論文 参考訳(メタデータ) (2020-12-29T08:22:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。