論文の概要: Gaussian Splatting on the Move: Blur and Rolling Shutter Compensation for Natural Camera Motion
- arxiv url: http://arxiv.org/abs/2403.13327v3
- Date: Wed, 17 Jul 2024 07:50:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 22:29:24.677173
- Title: Gaussian Splatting on the Move: Blur and Rolling Shutter Compensation for Natural Camera Motion
- Title(参考訳): 移動体上のガウススティング:自然カメラ運動に対するブラーと転がりシャッター補償
- Authors: Otto Seiskari, Jerry Ylilammi, Valtteri Kaatrasalo, Pekka Rantalankila, Matias Turkulainen, Juho Kannala, Esa Rahtu, Arno Solin,
- Abstract要約: 本稿では,カメラの動きに適応し,手持ち映像データを用いた高品質なシーン再構成を実現する手法を提案する。
合成データと実データの両方を用いて、既存の手法よりもカメラの動きを軽減できる性能を示した。
- 参考スコア(独自算出の注目度): 25.54868552979793
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: High-quality scene reconstruction and novel view synthesis based on Gaussian Splatting (3DGS) typically require steady, high-quality photographs, often impractical to capture with handheld cameras. We present a method that adapts to camera motion and allows high-quality scene reconstruction with handheld video data suffering from motion blur and rolling shutter distortion. Our approach is based on detailed modelling of the physical image formation process and utilizes velocities estimated using visual-inertial odometry (VIO). Camera poses are considered non-static during the exposure time of a single image frame and camera poses are further optimized in the reconstruction process. We formulate a differentiable rendering pipeline that leverages screen space approximation to efficiently incorporate rolling-shutter and motion blur effects into the 3DGS framework. Our results with both synthetic and real data demonstrate superior performance in mitigating camera motion over existing methods, thereby advancing 3DGS in naturalistic settings.
- Abstract(参考訳): 高品質なシーン再構成とガウススティング(3DGS)に基づく新しいビュー合成は、通常、安定して高品質な写真を必要とするが、ハンドヘルドカメラで撮影するには実用的ではない。
本稿では,カメラの動きに適応し,動きのぼやけやローリングシャッター歪みに苦しむハンドヘルド映像データによる高品質なシーン再構成を実現する手法を提案する。
本手法は,物理画像形成過程の詳細なモデリングに基づいて,視覚慣性オドメトリー(VIO)を用いて推定した速度を利用する。
カメラポーズは、単一の画像フレームの露光時間中に非静的と見なされ、カメラポーズは再構築プロセスにおいてさらに最適化される。
スクリーン空間近似を利用して、3DGSフレームワークにローリングシャッターとモーションブラー効果を効率よく組み込む、微分可能なレンダリングパイプラインを定式化する。
合成データと実データの両方を用いて,既存の手法よりもカメラの動きを軽減し,自然条件下での3DGSを推し進めた。
関連論文リスト
- CRiM-GS: Continuous Rigid Motion-Aware Gaussian Splatting from Motion Blur Images [12.603775893040972]
画像のぼやけた画像からリアルタイムレンダリング速度で正確な3Dシーンを再構成するために, 連続的な剛性運動対応ガウススプラッティング(CRiM-GS)を提案する。
我々は、剛体変換を利用して、物体の形状と大きさを保存し、適切な正則化でカメラの動きをモデル化する。
さらに,textitSE(3)フィールドに連続的な変形可能な3次元変換を導入し,剛体変換を実世界の問題に適用する。
論文 参考訳(メタデータ) (2024-07-04T13:37:04Z) - Modeling Ambient Scene Dynamics for Free-view Synthesis [31.233859111566613]
モノクルキャプチャから周囲のシーンを動的に自由視点で合成する手法を提案する。
本手法は, 複雑な静的シーンを忠実に再構築できる3次元ガウス散乱(3DGS)の最近の進歩に基づいている。
論文 参考訳(メタデータ) (2024-06-13T17:59:11Z) - EvaGaussians: Event Stream Assisted Gaussian Splatting from Blurry Images [39.584967370302735]
3次元ガウススプラッティング(3D-GS)は、3次元シーン再構成と新しいビュー合成において例外的な機能を示した。
本稿では,イベントストリーム支援型ガウシアンスプラッティング(EvaGaussians)について紹介する。これは,イベントカメラがキャプチャしたイベントストリームを統合して,ぼやけた画像から高品質な3D-GSを再構築する手法である。
論文 参考訳(メタデータ) (2024-05-29T04:59:27Z) - DeblurGS: Gaussian Splatting for Camera Motion Blur [45.13521168573883]
動きブル画像から鋭い3次元ガウススプラッティングを最適化するDeblurGSを提案する。
我々は,3次元ガウススプラッティングの顕著な再構成能力を活用して,きめ細かなシャープシーンを復元する。
提案手法は,6自由度カメラの動きをそれぞれのぼやけた観測のために推定し,それに対応するぼやけたレンダリングを合成する。
論文 参考訳(メタデータ) (2024-04-17T13:14:52Z) - Motion-aware 3D Gaussian Splatting for Efficient Dynamic Scene Reconstruction [89.53963284958037]
動的シーン再構築のための新しい動き認識拡張フレームワークを提案する。
具体的には,まず3次元ガウス運動と画素レベルの流れの対応性を確立する。
より厳密な最適化問題を示す先行的な変形に基づくパラダイムに対して,過渡対応変形補助モジュールを提案する。
論文 参考訳(メタデータ) (2024-03-18T03:46:26Z) - GGRt: Towards Pose-free Generalizable 3D Gaussian Splatting in Real-time [112.32349668385635]
GGRtは、現実のカメラポーズの必要性を軽減する、一般化可能な新しいビュー合成のための新しいアプローチである。
最初のポーズフリーの一般化可能な3D-GSフレームワークとして、GGRtは$ge$5 FPSで、リアルタイムレンダリングは$ge$100 FPSで実現している。
論文 参考訳(メタデータ) (2024-03-15T09:47:35Z) - Cinematic Behavior Transfer via NeRF-based Differentiable Filming [63.1622492808519]
既存のSLAM手法は動的シーンの制限に直面し、人間のポーズ推定はしばしば2次元投影に焦点を当てる。
まず,逆撮影行動推定手法を提案する。
次に,新しい2Dビデオや3D仮想環境に様々な撮影タイプを転送できる映像転送パイプラインを導入する。
論文 参考訳(メタデータ) (2023-11-29T15:56:58Z) - Motion-from-Blur: 3D Shape and Motion Estimation of Motion-blurred
Objects in Videos [115.71874459429381]
本研究では,映像から3次元の運動,3次元の形状,および高度に動きやすい物体の外観を同時推定する手法を提案する。
提案手法は, 高速移動物体の劣化と3次元再構成において, 従来の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-29T11:25:14Z) - Visual Odometry with an Event Camera Using Continuous Ray Warping and
Volumetric Contrast Maximization [31.627936023222052]
イベントカメラによるトラッキングとマッピングのための新しいソリューションを提案する。
カメラの動きは回転と変換の両方を含み、変位は任意に構造化された環境で起こる。
コントラストを3Dで実現することで,この問題に対する新たな解決法を提案する。
車両搭載イベントカメラによるAGV運動推定と3次元再構成への応用により,本手法の実用的妥当性が裏付けられる。
論文 参考訳(メタデータ) (2021-07-07T04:32:57Z) - Spatiotemporal Bundle Adjustment for Dynamic 3D Human Reconstruction in
the Wild [49.672487902268706]
本稿では,カメラの時間的アライメントと3次元点三角測量を共同で推定する枠組みを提案する。
複数の無同期・無同期ビデオカメラで捉えたイベントにおいて、人間の身体の3次元運動軌跡を再構成する。
論文 参考訳(メタデータ) (2020-07-24T23:50:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。