論文の概要: How Gender Interacts with Political Values: A Case Study on Czech BERT Models
- arxiv url: http://arxiv.org/abs/2403.13514v1
- Date: Wed, 20 Mar 2024 11:30:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 17:07:38.329528
- Title: How Gender Interacts with Political Values: A Case Study on Czech BERT Models
- Title(参考訳): ジェンダーが政治的価値とどのように相互作用するか:チェコのBERTモデルを事例として
- Authors: Adnan Al Ali, Jindřich Libovický,
- Abstract要約: このケーススタディは、チェコの事前訓練エンコーダの政治的バイアスに焦点を当てている。
チェコ語は性的な言語であるため、調査における男女の反応と文法的な性別がどのように一致しているかを測定する。
モデルが値駆動推論に従って文の確率を割り当てていないことが分かる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural language models, which reach state-of-the-art results on most natural language processing tasks, are trained on large text corpora that inevitably contain value-burdened content and often capture undesirable biases, which the models reflect. This case study focuses on the political biases of pre-trained encoders in Czech and compares them with a representative value survey. Because Czech is a gendered language, we also measure how the grammatical gender coincides with responses to men and women in the survey. We introduce a novel method for measuring the model's perceived political values. We find that the models do not assign statement probability following value-driven reasoning, and there is no systematic difference between feminine and masculine sentences. We conclude that BERT-sized models do not manifest systematic alignment with political values and that the biases observed in the models are rather due to superficial imitation of training data patterns than systematic value beliefs encoded in the models.
- Abstract(参考訳): ニューラル言語モデルは、ほとんどの自然言語処理タスクで最先端の結果に達するが、大きなテキストコーパスで訓練される。
このケーススタディは、チェコの事前訓練エンコーダの政治的バイアスに焦点を当て、それらを代表的価値調査と比較する。
チェコ語は性的な言語であるため、この調査では、文法的な性別が男女の反応とどのように一致しているかも測定している。
本稿では,モデルが認識する政治的価値を測定する新しい手法を提案する。
その結果, モデルでは, 価値駆動推論に従わず, 女性文と男性文の体系的な違いはないことがわかった。
我々は、BERTサイズのモデルは、政治的価値と体系的な一致を示すものではなく、モデルで観察されるバイアスは、モデルに符号化された体系的な価値信念よりも、トレーニングデータパターンの表面的な模倣によるものであると結論付けた。
関連論文リスト
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
既存の機械翻訳の性別バイアス評価は主に男性と女性の性別に焦点を当てている。
本研究では,AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words) のベンチマークを示す。
本研究では,感情的態度スコア(EAS)に基づく性別バイアス評価手法を提案する。
論文 参考訳(メタデータ) (2024-07-23T08:13:51Z) - Are Models Biased on Text without Gender-related Language? [14.931375031931386]
ステレオタイプフリーシナリオにおけるジェンダーバイアスを調査するための新しいフレームワークUnStereoEval(USE)を紹介する。
USEは事前学習データ統計に基づいて文レベルスコアを定義し、その文が単語と性別の関連が最小限であるかどうかを判定する。
28の試験モデルにおいて、偏見が低いことは、偏見が単にジェンダー関連の単語の存在に由来するものではないことを示唆している。
論文 参考訳(メタデータ) (2024-05-01T15:51:15Z) - Will the Prince Get True Love's Kiss? On the Model Sensitivity to Gender
Perturbation over Fairytale Texts [87.62403265382734]
近年の研究では、伝統的な妖精は有害な性バイアスを伴っていることが示されている。
本研究は,ジェンダーの摂動に対する頑健さを評価することによって,言語モデルの学習バイアスを評価することを目的とする。
論文 参考訳(メタデータ) (2023-10-16T22:25:09Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGenderは、視覚言語モデルで性別バイアスをベンチマークするための新しいデータセットである。
We focus to occupation-related biases in a hegemonic system of binary gender, inspired by Winograd and Winogender schemas。
我々は、最先端の視覚言語モデルをいくつかベンチマークし、それらが複雑な場面における二項性解消のバイアスを示すことを発見した。
論文 参考訳(メタデータ) (2023-06-21T17:59:51Z) - Gender Biases in Automatic Evaluation Metrics for Image Captioning [87.15170977240643]
画像キャプションタスクのためのモデルに基づく評価指標において、性別バイアスの体系的研究を行う。
偏りのある世代と偏りのない世代を区別できないことを含む、これらの偏りのあるメトリクスを使用することによる負の結果を実証する。
人間の判断と相関を損なうことなく、測定バイアスを緩和する簡便で効果的な方法を提案する。
論文 参考訳(メタデータ) (2023-05-24T04:27:40Z) - Measuring Gender Bias in West Slavic Language Models [41.49834421110596]
チェコ語、ポーランド語、スロバキア語で最初のテンプレートベースのデータセットを導入し、男性、女性、非バイナリー対象に対する性別バイアスを測定した。
生成した単語の毒性と性差を定量化することにより、西スラヴ語モデルで符号化された性別バイアスを測定する。
これらの言語モデルは、被験者の性別に依存する有害な完成物を生成する。
論文 参考訳(メタデータ) (2023-04-12T11:49:43Z) - Efficient Gender Debiasing of Pre-trained Indic Language Models [0.0]
言語モデルが事前訓練されたデータに存在する性別バイアスは、これらのモデルを使用するシステムに反映される。
本稿では,ヒンディー語モデルにおける職業に関する性別バイアスを測定した。
以上の結果から,提案手法の適応後のバイアスが低減されることが示唆された。
論文 参考訳(メタデータ) (2022-09-08T09:15:58Z) - The Birth of Bias: A case study on the evolution of gender bias in an
English language model [1.6344851071810076]
私たちは、英語のウィキペディアコーパスでトレーニングされたLSTMアーキテクチャを使って、比較的小さな言語モデルを使用します。
性別の表現は動的であり、訓練中に異なる位相を識別する。
モデルの入力埋め込みにおいて,ジェンダー情報が局所的に表現されることが示される。
論文 参考訳(メタデータ) (2022-07-21T00:59:04Z) - Quantifying Gender Bias Towards Politicians in Cross-Lingual Language
Models [104.41668491794974]
代名詞として政治家の名前を取り巻く言語モデルによって生成される形容詞と動詞の用法を定量化する。
死者や指定された言葉が男女の政治家と関連しているのに対し、美人や離婚といった特定の言葉が主に女性政治家に関係していることが判明した。
論文 参考訳(メタデータ) (2021-04-15T15:03:26Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。