論文の概要: VL-Mamba: Exploring State Space Models for Multimodal Learning
- arxiv url: http://arxiv.org/abs/2403.13600v1
- Date: Wed, 20 Mar 2024 13:48:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 16:38:11.068965
- Title: VL-Mamba: Exploring State Space Models for Multimodal Learning
- Title(参考訳): VL-Mamba:マルチモーダル学習のための状態空間モデル
- Authors: Yanyuan Qiao, Zheng Yu, Longteng Guo, Sihan Chen, Zijia Zhao, Mingzhen Sun, Qi Wu, Jing Liu,
- Abstract要約: 本研究では,状態空間モデルに基づく多モーダル大規模言語モデルであるVL-Mambaを提案する。
具体的には、まず、LLamaやVicunaのようなトランスフォーマーベースのバックボーン言語モデルを、事前訓練されたMamba言語モデルに置き換える。
- 参考スコア(独自算出の注目度): 22.701028299912398
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal large language models (MLLMs) have attracted widespread interest and have rich applications. However, the inherent attention mechanism in its Transformer structure requires quadratic complexity and results in expensive computational overhead. Therefore, in this work, we propose VL-Mamba, a multimodal large language model based on state space models, which have been shown to have great potential for long-sequence modeling with fast inference and linear scaling in sequence length. Specifically, we first replace the transformer-based backbone language model such as LLama or Vicuna with the pre-trained Mamba language model. Then, we empirically explore how to effectively apply the 2D vision selective scan mechanism for multimodal learning and the combinations of different vision encoders and variants of pretrained Mamba language models. The extensive experiments on diverse multimodal benchmarks with competitive performance show the effectiveness of our proposed VL-Mamba and demonstrate the great potential of applying state space models for multimodal learning tasks.
- Abstract(参考訳): MLLM(Multimodal large language model)は広く関心を集めており、豊富な応用がある。
しかし、トランスフォーマー構造に固有の注意機構は2次複雑さを必要とし、計算コストがかかる。
そこで本研究では,状態空間モデルに基づく多モーダル大規模言語モデルであるVL-Mambaを提案する。
具体的には、まず、LLamaやVicunaのようなトランスフォーマーベースのバックボーン言語モデルを、事前訓練されたMamba言語モデルに置き換える。
そこで我々は,マルチモーダル学習に2次元視覚選択スキャン機構を効果的に適用し,様々な視覚エンコーダと事前訓練されたマンバ言語モデルの変種を併用する方法を実証的に検討した。
多様なマルチモーダルベンチマークと競争性能に関する広範な実験は、提案したVL-Mambaの有効性を示し、マルチモーダル学習タスクに状態空間モデルを適用する大きな可能性を示している。
関連論文リスト
- Multimodal Latent Language Modeling with Next-Token Diffusion [111.93906046452125]
マルチモーダル生成モデルは、離散データ(テキストやコードなど)と連続データ(画像、オーディオ、ビデオなど)の両方を扱う統一的なアプローチを必要とする。
因果変換器を用いて連続データと離散データをシームレスに統合する潜在言語モデリング(LatentLM)を提案する。
論文 参考訳(メタデータ) (2024-12-11T18:57:32Z) - Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling [128.24325909395188]
InternVL 2.5は、InternVL 2.0上に構築された高度マルチモーダル大規模言語モデル(MLLM)シリーズである。
InternVL 2.5は、GPT-4oやClaude-3.5-Sonnetといった主要な商用モデルと競合する競争力を持つ。
このモデルが、マルチモーダルAIシステムの開発と適用のための新しい標準を設定することで、オープンソースコミュニティに貢献できることを願っています。
論文 参考訳(メタデータ) (2024-12-06T18:57:08Z) - IAA: Inner-Adaptor Architecture Empowers Frozen Large Language Model with Multimodal Capabilities [4.269326314400742]
マルチモーダル大言語モデル(MLLM)のための内適応アーキテクチャを導入する。
このアーキテクチャは、大きな言語モデル内の様々な深さで複数のマルチモーダルアダプタを組み込んで、テキスト指向のトランスフォーマー層との直接の相互作用を容易にする。
大規模な整列データを必要とする従来のフリーズ言語モデルとは異なり、提案アーキテクチャは小規模データセットにおいて優れた性能を実現することができる。
論文 参考訳(メタデータ) (2024-08-23T08:10:13Z) - Advancing Multimodal Large Language Models with Quantization-Aware Scale Learning for Efficient Adaptation [70.22782550540714]
QSLAWと呼ばれるマルチモーダルワームアップに基づく量子化対応スケールルアーニング法
本稿では、QSLAWと呼ばれるマルチモーダルワームアップに基づく量子化対応スケールLeArning手法を提案する。
論文 参考訳(メタデータ) (2024-08-07T12:42:09Z) - ML-Mamba: Efficient Multi-Modal Large Language Model Utilizing Mamba-2 [4.30176340351235]
本稿では,マルチモーダル言語モデルであるML-Mambaを紹介する。
トランスフォーマーベースのバックボーンを事前訓練したMamba-2モデルに置き換え、マルチモーダル学習に2次元視覚選択的走査機構を統合する方法を模索する。
論文 参考訳(メタデータ) (2024-07-29T09:38:15Z) - LLAVADI: What Matters For Multimodal Large Language Models Distillation [77.73964744238519]
本研究では,新しい効率的なモデル構造を提案するのではなく,スクラッチから小規模MLLMを訓練する。
本研究は, 知識蒸留プロセスにおける学習戦略, モデル選択, 蒸留アルゴリズムに関するものである。
異なるベンチマークと適切な戦略を評価することで、2.7Bの小型モデルでも7Bまたは13Bのパラメータを持つ大型モデルと同等に動作することができる。
論文 参考訳(メタデータ) (2024-07-28T06:10:47Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
提案手法は, 等価計算コストの高密度モデルに対して, 様々なベンチマークにおいて, 最先端性能を実現することができることを示す。
我々の研究は、MoEモデルのトレーニングの安定化、モデル解釈可能性に対するMoEの影響の理解、ビジョン言語モデルをスケールする際の計算性能間のトレードオフのバランスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-03-13T16:00:31Z) - Enabling Multimodal Generation on CLIP via Vision-Language Knowledge
Distillation [79.72299298976525]
我々は、視覚言語知識蒸留(VLKD)を通して、テキスト事前学習言語モデル(PLM)を用いた視覚言語事前学習モデルの拡張を提案する。
実験の結果,複数モーダル生成タスクにおいて,視覚的質問応答や画像キャプションなどのゼロショット性能が強いことがわかった。
PLMの本来のテキスト言語理解と生成能力は、VLKDの後に維持される。
論文 参考訳(メタデータ) (2022-03-12T09:33:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。