Electron wave spin in a cavity
- URL: http://arxiv.org/abs/2403.13696v1
- Date: Wed, 20 Mar 2024 16:00:08 GMT
- Title: Electron wave spin in a cavity
- Authors: Ju Gao, Fang Shen,
- Abstract summary: Current density circulates concentrically beyond the cavity boundary, illustrating the concept of evanescent wave spin.
The integration of charge and spin properties into a single Lorentz covariant entity suggests that the electron wave constitutes the fundamental and deterministic reality of the electron.
- Score: 2.977255700811213
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Our study reveals electron spin in a cavity as a stable circulating current density, characterized by a torus topology. This current density circulates concentrically beyond the cavity boundary, illustrating the concept of evanescent wave spin. While the interaction with a uniform magnetic field aligns with established spin-field observations, our analysis of regional contributions deviates from particle-based spin predictions. The integration of charge and spin properties into a single Lorentz covariant entity suggests that the electron wave constitutes the fundamental and deterministic reality of the electron.
Related papers
- Evanescent Electron Wave Spin [2.977255700811213]
This study demonstrates the existence of an evanescent electron wave outside both finite and infinite quantum wells.
We show that this evanescent wave shares the spin characteristics of the wave confined within the well.
Our findings suggest that the electron cannot be confined to a mathematical singularity and that quantum information, or quantum entropy, can leak through any confinement.
arXiv Detail & Related papers (2023-09-29T15:32:37Z) - Electron Wave Spin in Excited States [6.358214877782412]
The wave spin of an electron can be fully characterized by the current density calculated from the exact four-spinor solution of the Dirac equation.
The interaction of the current with a magnetic potential produces a finer structure of anomalous Zeeman splitting.
arXiv Detail & Related papers (2023-03-20T04:27:23Z) - Electron Wave Spin in a Quantum Well [0.0]
We show that a stable circulating total current density exists inside the well with a donut shaped topography.
A spin value is modified by the confining geometry of the well.
A free electron Gaussian wavepacket is unstable and experiences quick decoherence.
arXiv Detail & Related papers (2022-03-17T16:50:36Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Effects of the dynamical magnetization state on spin transfer [68.8204255655161]
We show that the complex interactions between the spin-polarized electrons and the dynamical states of the local spins can be decomposed into separate processes.
Our results suggest that exquisite control of spin transfer efficiency and of the resulting dynamical magnetization states may be achievable.
arXiv Detail & Related papers (2021-01-21T22:12:03Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - Relativistic electron spin dynamics in a strong unipolar laser field [0.0]
We show proportionality between the change of the electron spin projections and the electric field area of the pulse.
It is shown that the classical relativistic predictions are accurately reproduced when using the Foldy-Wouthuysen operator.
arXiv Detail & Related papers (2020-05-06T14:10:09Z) - Energy and momentum conservation in spin transfer [77.34726150561087]
We show that energy and linear momentum conservation laws impose strong constraints on the properties of magnetic excitations induced by spin transfer.
Our results suggest the possibility to achieve precise control of spin transfer-driven magnetization dynamics.
arXiv Detail & Related papers (2020-04-04T15:43:30Z) - Generalized spin-orbit interaction in two-dimensional electron systems [0.0]
Dirac quantum field theory describes electrons and positrons as elementary excitations of the spinor field.
The dependence of the spin-orbit interaction on the spin states in quasi-two-dimensional systems of electrons localized in a quantum well is analyzed.
arXiv Detail & Related papers (2020-03-23T07:18:52Z) - Paraxial wave function and Gouy phase for a relativistic electron in a
uniform magnetic field [68.8204255655161]
A connection between quantum mechanics and paraxial equations is established for a Dirac particle in external fields.
The paraxial form of the Landau eigenfunction for a relativistic electron in a uniform magnetic field is determined.
arXiv Detail & Related papers (2020-03-08T13:14:44Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.