Relativistic electron spin dynamics in a strong unipolar laser field
- URL: http://arxiv.org/abs/2005.02839v1
- Date: Wed, 6 May 2020 14:10:09 GMT
- Title: Relativistic electron spin dynamics in a strong unipolar laser field
- Authors: I. A. Aleksandrov, D. A. Tumakov, A. Kudlis, V. M. Shabaev, N. N.
Rosanov
- Abstract summary: We show proportionality between the change of the electron spin projections and the electric field area of the pulse.
It is shown that the classical relativistic predictions are accurately reproduced when using the Foldy-Wouthuysen operator.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The behavior of an electron spin interacting with a linearly polarized laser
field is analyzed. In contrast to previous considerations of the problem, the
initial state of the electron represents a localized wave packet, and a spatial
envelope is introduced for the laser pulse, which allows one to take into
account the finite size of both objects. Special attention is paid to
ultrashort pulses possessing a high degree of unipolarity. Within a classical
treatment (both nonrelativistic and relativistic), proportionality between the
change of the electron spin projections and the electric field area of the
pulse is clearly demonstrated. We also perform calculations of the electron
spin dynamics according to the Dirac equation. Evolving the electron wave
function in time, we compute the mean values of the spin operator in various
forms. It is shown that the classical relativistic predictions are accurately
reproduced when using the Foldy-Wouthuysen operator. The same results are
obtained when using the Lorentz transformation and the nonrelativistic (Pauli)
spin operator in the particle's rest frame.
Related papers
- Acceleration and twisting of neutral atoms by strong elliptically polarized short-wavelength laser pulses [0.0]
We have investigated non-dipole effects in the interaction of a hydrogen atom with elliptically polarized laser pulses of intensity 10$14$ W/cm$2$ with about 8 fs duration.
The transition from linear to elliptical laser polarization leads to the twisting of the atom relative to the axis directed along the pulse propagation.
arXiv Detail & Related papers (2024-08-16T09:11:34Z) - Electron wave spin in a cavity [2.977255700811213]
Current density circulates concentrically beyond the cavity boundary, illustrating the concept of evanescent wave spin.
The integration of charge and spin properties into a single Lorentz covariant entity suggests that the electron wave constitutes the fundamental and deterministic reality of the electron.
arXiv Detail & Related papers (2024-03-20T16:00:08Z) - Quantum interaction of sub-relativistic aloof electrons with mesoscopic
samples [91.3755431537592]
Relativistic electrons experience very slight wave packet distortion and negligible momentum recoil when interacting with nanometer-sized samples.
Modelling fast electrons as classical point-charges provides extremely accurate theoretical predictions of energy-loss spectra.
arXiv Detail & Related papers (2022-11-14T15:22:37Z) - Spin Current Density Functional Theory of the Quantum Spin-Hall Phase [59.50307752165016]
We apply the spin current density functional theory to the quantum spin-Hall phase.
We show that the explicit account of spin currents in the electron-electron potential of the SCDFT is key to the appearance of a Dirac cone.
arXiv Detail & Related papers (2022-08-29T20:46:26Z) - Scattering of a twisted electron wavepacket by a finite laser pulse [0.0]
The behavior of a twisted electron colliding with a linearly polarized laser pulse is investigated within relativistic quantum mechanics.
It is shown that the motion of a twisted wavepacket can be accurately described by averaging over classical trajectories.
Full quantum simulations demonstrate that the ring structure of the wavepacket in the transverse plane can be significantly distorted.
arXiv Detail & Related papers (2022-05-31T20:44:32Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Three-electron correlations in strong laser field ionization: Spin
induced effects [0.0]
We study model atoms with three active electrons interacting with strong pulsed radiation, using an ab-initio time-dependent Schr"odinger equation on a grid.
We show that significant differences are obtained between model Neon and Nitrogen atoms.
These differences are traced back to the different symmetries of the electronic wavefunctions, and directly related to the different initial state spin components.
arXiv Detail & Related papers (2021-04-29T15:57:00Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - Generalized spin-orbit interaction in two-dimensional electron systems [0.0]
Dirac quantum field theory describes electrons and positrons as elementary excitations of the spinor field.
The dependence of the spin-orbit interaction on the spin states in quasi-two-dimensional systems of electrons localized in a quantum well is analyzed.
arXiv Detail & Related papers (2020-03-23T07:18:52Z) - Position and spin in relativistic quantum mechanics [68.8204255655161]
The position and spin operators in the Foldy-Wouthuysen representation are quantum-mechanical counterparts of the classical position and spin variables.
The spin-orbit interaction does not exist for a free particle if the conventional operators of the orbital angular momentum and the rest-frame spin are used.
arXiv Detail & Related papers (2020-03-14T07:49:40Z) - Paraxial wave function and Gouy phase for a relativistic electron in a
uniform magnetic field [68.8204255655161]
A connection between quantum mechanics and paraxial equations is established for a Dirac particle in external fields.
The paraxial form of the Landau eigenfunction for a relativistic electron in a uniform magnetic field is determined.
arXiv Detail & Related papers (2020-03-08T13:14:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.