Generalized spin-orbit interaction in two-dimensional electron systems
- URL: http://arxiv.org/abs/2003.14245v1
- Date: Mon, 23 Mar 2020 07:18:52 GMT
- Title: Generalized spin-orbit interaction in two-dimensional electron systems
- Authors: A. A. Eremko, L. Brizhik, V.M. Loktev
- Abstract summary: Dirac quantum field theory describes electrons and positrons as elementary excitations of the spinor field.
The dependence of the spin-orbit interaction on the spin states in quasi-two-dimensional systems of electrons localized in a quantum well is analyzed.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In frame of Dirac quantum field theory that describes electrons and positrons
as elementary excitations of the spinor field, the generalized operator of the
spin-orbit interaction is obtained using non-relativistic approximation in the
Hamilton operator of the spinor field taking into account the presence of an
external potential. This operator is shown to contain a new term in addition to
the known ones. By an example of a model potential in the form of a quantum
well, it is demonstrated that the Schroedinger equation with the generalized
spin-orbit interaction operator describes all spin states obtained directly
from the Dirac equation. The dependence of the spin-orbit interaction on the
spin states in quasi-two-dimensional systems of electrons localized in a
quantum well is analyzed. It is demonstrated that the electric current in the
quantum well layer induces the spin polarization of charge carriers near the
boundary surfaces of the layer, with the polarization of the charge carriers
being opposite at the different surfaces. This phenomenon appears due to the
spin-orbit interaction and is known as the spin Hall effect, which was observed
experimentally in heterostructures with the corresponding geometry.
Related papers
- Electron wave spin in a cavity [2.977255700811213]
Current density circulates concentrically beyond the cavity boundary, illustrating the concept of evanescent wave spin.
The integration of charge and spin properties into a single Lorentz covariant entity suggests that the electron wave constitutes the fundamental and deterministic reality of the electron.
arXiv Detail & Related papers (2024-03-20T16:00:08Z) - Spin-dependent edge states in two-dimensional Dirac materials with a flat band [0.0]
We investigate spin-dependent Dirac electron optics in 2D pseudospin-1 Dirac materials.
electrons with a specific spin orientation (e.g., spin-down) can be trapped in a class of long-lived edge modes, generating resonant scattering.
arXiv Detail & Related papers (2024-02-22T03:24:48Z) - Chirality-induced emergent spin-orbit coupling in topological atomic
lattices [0.0]
We show that photonic excitations in pseudospin-1/2 atomic lattices exhibit an emergent spin-orbit coupling when the geometry is chiral.
Our results demonstrate that chiral atom arrays are a robust platform for realizing spin-orbit coupled topological states of matter.
arXiv Detail & Related papers (2023-11-15T19:00:13Z) - Spin Current Density Functional Theory of the Quantum Spin-Hall Phase [59.50307752165016]
We apply the spin current density functional theory to the quantum spin-Hall phase.
We show that the explicit account of spin currents in the electron-electron potential of the SCDFT is key to the appearance of a Dirac cone.
arXiv Detail & Related papers (2022-08-29T20:46:26Z) - Spin Hall conductivity of interacting two-dimensional electron systems [0.0]
path-integral approach incorporated within the Keldysh formalism is used to derive the kinetic equation for the semiclassical Green's function.
We discuss the frequency dependence of the spin Hall conductivity and further elucidate the role of electron interactions at finite temperatures for both the ballistic and diffusive regimes of transport.
arXiv Detail & Related papers (2022-08-08T03:13:13Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - Relativistic electron spin dynamics in a strong unipolar laser field [0.0]
We show proportionality between the change of the electron spin projections and the electric field area of the pulse.
It is shown that the classical relativistic predictions are accurately reproduced when using the Foldy-Wouthuysen operator.
arXiv Detail & Related papers (2020-05-06T14:10:09Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.