論文の概要: Leveraging High-Resolution Features for Improved Deep Hashing-based Image Retrieval
- arxiv url: http://arxiv.org/abs/2403.13747v1
- Date: Wed, 20 Mar 2024 16:54:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 16:08:57.393865
- Title: Leveraging High-Resolution Features for Improved Deep Hashing-based Image Retrieval
- Title(参考訳): 深部ハッシュ画像検索における高分解能特徴の活用
- Authors: Aymene Berriche, Mehdi Adjal Zakaria, Riyadh Baghdadi,
- Abstract要約: 本稿では,HHNet(High-Resolution Hashing Network)と呼ばれるディープハッシュタスクのバックボーンとして高分解能ネットワーク(HRNet)を利用する新しい手法を提案する。
提案手法は,CIFAR-10, NUS-WIDE, MS COCO, ImageNetなど,すべてのベンチマークデータセットを対象とした既存手法と比較して,優れた性能を示す。
- 参考スコア(独自算出の注目度): 0.10923877073891444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep hashing techniques have emerged as the predominant approach for efficient image retrieval. Traditionally, these methods utilize pre-trained convolutional neural networks (CNNs) such as AlexNet and VGG-16 as feature extractors. However, the increasing complexity of datasets poses challenges for these backbone architectures in capturing meaningful features essential for effective image retrieval. In this study, we explore the efficacy of employing high-resolution features learned through state-of-the-art techniques for image retrieval tasks. Specifically, we propose a novel methodology that utilizes High-Resolution Networks (HRNets) as the backbone for the deep hashing task, termed High-Resolution Hashing Network (HHNet). Our approach demonstrates superior performance compared to existing methods across all tested benchmark datasets, including CIFAR-10, NUS-WIDE, MS COCO, and ImageNet. This performance improvement is more pronounced for complex datasets, which highlights the need to learn high-resolution features for intricate image retrieval tasks. Furthermore, we conduct a comprehensive analysis of different HRNet configurations and provide insights into the optimal architecture for the deep hashing task
- Abstract(参考訳): 効率的な画像検索のための主要なアプローチとして、ディープハッシュ技術が登場している。
伝統的に、これらの方法はAlexNetやVGG-16のような事前訓練された畳み込みニューラルネットワーク(CNN)を特徴抽出器として利用している。
しかしながら、データセットの複雑さの増大は、これらのバックボーンアーキテクチャが効果的な画像検索に不可欠な意味のある特徴をキャプチャする上で、課題となる。
本研究では,画像検索の最先端技術を用いて学習した高精細な特徴を用いた画像検索の有効性について検討する。
具体的には,HHNet(High-Resolution Hashing Network)と呼ばれるディープハッシュタスクのバックボーンとして高分解能ネットワーク(HRNet)を利用する新しい手法を提案する。
提案手法は,CIFAR-10, NUS-WIDE, MS COCO, ImageNetなど,すべてのベンチマークデータセットを対象とした既存手法と比較して,優れた性能を示す。
このパフォーマンス改善は、複雑なデータセットに対してより顕著であり、複雑な画像検索タスクのために高精細な機能を学ぶ必要性を強調している。
さらに、異なるHRNet構成の包括的分析を行い、ディープハッシュタスクの最適アーキテクチャに関する洞察を提供する。
関連論文リスト
- PGNeXt: High-Resolution Salient Object Detection via Pyramid Grafting Network [24.54269823691119]
本稿では、データセットとネットワークフレームワークの両方の観点から、より難解な高分解能サルエントオブジェクト検出(HRSOD)について述べる。
HRSODデータセットの欠如を補うため、UHRSDと呼ばれる大規模高解像度の高分解能物体検出データセットを慎重に収集した。
すべての画像はピクセルレベルで微妙にアノテートされ、以前の低解像度のSODデータセットをはるかに上回っている。
論文 参考訳(メタデータ) (2024-08-02T09:31:21Z) - PointHR: Exploring High-Resolution Architectures for 3D Point Cloud
Segmentation [77.44144260601182]
3Dポイントクラウドセグメンテーションのための高分解能アーキテクチャについて検討する。
我々は、特徴抽出のためのknnベースのシーケンス演算子と差分再サンプリング演算子を含む、PointHRという名前の統一パイプラインを提案する。
S3DISとScanNetV2データセットを用いて,これらのアーキテクチャを高密度点雲解析のために評価する。
論文 参考訳(メタデータ) (2023-10-11T09:29:17Z) - RDRN: Recursively Defined Residual Network for Image Super-Resolution [58.64907136562178]
深部畳み込みニューラルネットワーク(CNN)は、単一画像超解像において顕著な性能を得た。
本稿では,注目ブロックを効率的に活用する新しいネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-11-17T11:06:29Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
本稿では,ハイパースペクトル(HS)画像の難解化問題に対処する。
ランク付き低次元畳み込み集合(Re-ConvSet)を提案する。
次に、Re-ConvSetを広く使われているU-Netアーキテクチャに組み込んで、HS画像復号法を構築する。
論文 参考訳(メタデータ) (2022-07-09T13:35:12Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
本稿では,ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とする。
我々は、高解像度の空間的詳細を同時に保存しながら、複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
提案手法は,デフォーカス・デブロアリング,画像デノイング,超解像,画像強調など,さまざまな画像処理タスクに対して,最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2022-04-19T17:59:45Z) - Combined Depth Space based Architecture Search For Person
Re-identification [70.86236888223569]
個人再識別(ReID)のための軽量で適切なネットワークの設計を目指しています。
本研究では,CDNetと呼ばれる効率的なネットワークアーキテクチャの探索に基づく,複合深さ空間(Componed Depth Space, CDS)と呼ばれる新しい検索空間を提案する。
そこで我々はTop-k Sample Search戦略という低コストの検索戦略を提案し、検索空間をフル活用し、局所的な最適結果のトラップを避ける。
論文 参考訳(メタデータ) (2021-04-09T02:40:01Z) - Deep Iterative Residual Convolutional Network for Single Image
Super-Resolution [31.934084942626257]
我々は、ISRResCNet(Deep Iterative Super-Resolution Residual Convolutional Network)を提案する。
残差学習アプローチを用いて、深層ネットワークを反復的に訓練することにより、強力な画像正規化と大規模最適化手法を活用する。
トレーニング可能なパラメータがいくつかある本手法は,最先端の手法と比較して,異なるスケーリング要因に対する結果を改善する。
論文 参考訳(メタデータ) (2020-09-07T12:54:14Z) - Hyperspectral Image Super-resolution via Deep Spatio-spectral
Convolutional Neural Networks [32.10057746890683]
本稿では,高分解能ハイパースペクトル像と高分解能マルチスペクトル像を融合させる,深部畳み込みニューラルネットワークの簡易かつ効率的なアーキテクチャを提案する。
提案したネットワークアーキテクチャは,近年の最先端ハイパースペクトル画像の超解像化手法と比較して,最高の性能を達成している。
論文 参考訳(メタデータ) (2020-05-29T05:56:50Z) - Deep Attentive Generative Adversarial Network for Photo-Realistic Image
De-Quantization [25.805568996596783]
減量子化は、高ビット深度画面に表示するための低ビット深度画像の視覚的品質を改善することができる。
本稿では,画像強度分解能の超解像を実現するためのDAGANアルゴリズムを提案する。
DenseResAttモジュールは、自己保持機構を備えた密集した残留ブロックで構成されている。
論文 参考訳(メタデータ) (2020-04-07T06:45:01Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。