Leveraging High-Resolution Features for Improved Deep Hashing-based Image Retrieval
- URL: http://arxiv.org/abs/2403.13747v1
- Date: Wed, 20 Mar 2024 16:54:55 GMT
- Title: Leveraging High-Resolution Features for Improved Deep Hashing-based Image Retrieval
- Authors: Aymene Berriche, Mehdi Adjal Zakaria, Riyadh Baghdadi,
- Abstract summary: We propose a novel methodology that utilizes High-Resolution Networks (HRNets) as the backbone for the deep hashing task, termed High-Resolution Hashing Network (HHNet)
Our approach demonstrates superior performance compared to existing methods across all tested benchmark datasets, including CIFAR-10, NUS-WIDE, MS COCO, and ImageNet.
- Score: 0.10923877073891444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep hashing techniques have emerged as the predominant approach for efficient image retrieval. Traditionally, these methods utilize pre-trained convolutional neural networks (CNNs) such as AlexNet and VGG-16 as feature extractors. However, the increasing complexity of datasets poses challenges for these backbone architectures in capturing meaningful features essential for effective image retrieval. In this study, we explore the efficacy of employing high-resolution features learned through state-of-the-art techniques for image retrieval tasks. Specifically, we propose a novel methodology that utilizes High-Resolution Networks (HRNets) as the backbone for the deep hashing task, termed High-Resolution Hashing Network (HHNet). Our approach demonstrates superior performance compared to existing methods across all tested benchmark datasets, including CIFAR-10, NUS-WIDE, MS COCO, and ImageNet. This performance improvement is more pronounced for complex datasets, which highlights the need to learn high-resolution features for intricate image retrieval tasks. Furthermore, we conduct a comprehensive analysis of different HRNet configurations and provide insights into the optimal architecture for the deep hashing task
Related papers
- PGNeXt: High-Resolution Salient Object Detection via Pyramid Grafting Network [24.54269823691119]
We present an advanced study on more challenging high-resolution salient object detection (HRSOD) from both dataset and network framework perspectives.
To compensate for the lack of HRSOD dataset, we thoughtfully collect a large-scale high resolution salient object detection dataset, called UHRSD.
All the images are finely annotated in pixel-level, far exceeding previous low-resolution SOD datasets.
arXiv Detail & Related papers (2024-08-02T09:31:21Z) - PointHR: Exploring High-Resolution Architectures for 3D Point Cloud
Segmentation [77.44144260601182]
We explore high-resolution architectures for 3D point cloud segmentation.
We propose a unified pipeline named PointHR, which includes a knn-based sequence operator for feature extraction and a differential resampling operator.
To evaluate these architectures for dense point cloud analysis, we conduct thorough experiments using S3DIS and ScanNetV2 datasets.
arXiv Detail & Related papers (2023-10-11T09:29:17Z) - RDRN: Recursively Defined Residual Network for Image Super-Resolution [58.64907136562178]
Deep convolutional neural networks (CNNs) have obtained remarkable performance in single image super-resolution.
We propose a novel network architecture which utilizes attention blocks efficiently.
arXiv Detail & Related papers (2022-11-17T11:06:29Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
This paper tackles the challenging problem of hyperspectral (HS) image denoising.
We propose rank-enhanced low-dimensional convolution set (Re-ConvSet)
We then incorporate Re-ConvSet into the widely-used U-Net architecture to construct an HS image denoising method.
arXiv Detail & Related papers (2022-07-09T13:35:12Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - Combined Depth Space based Architecture Search For Person
Re-identification [70.86236888223569]
We aim to design a lightweight and suitable network for person re-identification (ReID)
We propose a novel search space called Combined Depth Space (CDS), based on which we search for an efficient network architecture, which we call CDNet.
We then propose a low-cost search strategy named the Top-k Sample Search strategy to make full use of the search space and avoid trapping in local optimal result.
arXiv Detail & Related papers (2021-04-09T02:40:01Z) - Deep Iterative Residual Convolutional Network for Single Image
Super-Resolution [31.934084942626257]
We propose a deep Iterative Super-Resolution Residual Convolutional Network (ISRResCNet)
It exploits the powerful image regularization and large-scale optimization techniques by training the deep network in an iterative manner with a residual learning approach.
Our method with a few trainable parameters improves the results for different scaling factors in comparison with the state-of-art methods.
arXiv Detail & Related papers (2020-09-07T12:54:14Z) - Hyperspectral Image Super-resolution via Deep Spatio-spectral
Convolutional Neural Networks [32.10057746890683]
We propose a simple and efficient architecture for deep convolutional neural networks to fuse a low-resolution hyperspectral image and a high-resolution multispectral image.
The proposed network architecture achieves best performance compared with recent state-of-the-art hyperspectral image super-resolution approaches.
arXiv Detail & Related papers (2020-05-29T05:56:50Z) - Deep Attentive Generative Adversarial Network for Photo-Realistic Image
De-Quantization [25.805568996596783]
De-quantization can improve the visual quality of low bit-depth image to display on high bit-depth screen.
This paper proposes DAGAN algorithm to perform super-resolution on image intensity resolution.
DenseResAtt module consists of dense residual blocks armed with self-attention mechanism.
arXiv Detail & Related papers (2020-04-07T06:45:01Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.